zhenbo

ISSN 2096-7780 CN 10-1665/P

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地面三维激光扫描仪在建(构)筑物测量分析中的应用:回顾

杨凡 范志伟 温超 李晓丽 李志强 齐文华

杨凡, 范志伟, 温超, 李晓丽, 李志强, 齐文华. 地面三维激光扫描仪在建(构)筑物测量分析中的应用:回顾[J]. 地震科学进展. doi: 10.19987/j.dzkxjz.2022-167
引用本文: 杨凡, 范志伟, 温超, 李晓丽, 李志强, 齐文华. 地面三维激光扫描仪在建(构)筑物测量分析中的应用:回顾[J]. 地震科学进展. doi: 10.19987/j.dzkxjz.2022-167
Yang Fan, Fan Zhiwei, Wen Chao, Li Xiaoli, Li Zhiqiang, Qi Wenhua. A Review of Application of Terrestrial Laser Scanning in Building Seismic Damage Analysis[J]. Progress in Earthquake Sciences. doi: 10.19987/j.dzkxjz.2022-167
Citation: Yang Fan, Fan Zhiwei, Wen Chao, Li Xiaoli, Li Zhiqiang, Qi Wenhua. A Review of Application of Terrestrial Laser Scanning in Building Seismic Damage Analysis[J]. Progress in Earthquake Sciences. doi: 10.19987/j.dzkxjz.2022-167

地面三维激光扫描仪在建(构)筑物测量分析中的应用:回顾

doi: 10.19987/j.dzkxjz.2022-167
基金项目: 河北省地震科技星火计划项目(DZ2021120300001)和国家自然科学基金(41907397)联合资助。
详细信息
    通讯作者:

    杨凡(1986-),男,高级工程师,主要从事地震应急、遥感应用、地震灾害等方面研究。E-mail:yangfan1182@126.com

A Review of Application of Terrestrial Laser Scanning in Building Seismic Damage Analysis

  • 摘要: 地面三维激光扫描仪(Terrestrial Laser Scanning,TLS)作为新兴的一门技术,逐渐被应用到测量等各个领域,是获取地物目标LiDAR(Light Detection and Ranging)高精度数据的主要途径。TLS能够探测到建(构)筑物更多细节方面的信息,主要包括建筑物结构的变形和损伤(包括建筑物墙体的剪切开裂、墙面脱落及承重构件的损伤),同时可以获得诸如墙体倾斜、裂缝空间分布、体积和位置变化计算等更多测量数据。TLS高精度数据的获取为提取变形较小,肉眼无法识别的破坏特征提供了技术帮助。本研究回顾总结了TLS在建筑物变形监测、三维建模、数据分析方法和建筑物震害损失分析方面的研究。在文献回顾和深入讨论后,提出了TLS在建筑物震害分析中未来的研究方向。

     

  • 图  1  激光技术发展

    Figure  1.  Laser technology development

  • [1] 窦爱霞. 基于机载LiDAR数据的建筑物震害识别特征参数研究[D]. 北京: 中国地震局地质研究所, 2018

    Dou A X. Study on earthquake damage identification feature parameters of building based on airborne LiDAR data[D]. Beijing: Institute of Geology, China Earthquake Administration, 2018
    [2] Makuch M,Gawronek P. 3D point cloud analysis for damage detection on hyperboloid cooling tower shells[J]. Remote Sensing,2020,12(10):1542 doi: 10.3390/rs12101542
    [3] Markiewicz J,Łapiński L,Kot P,et al. The quality assessment of different geolocalisation methods for a sensor system to monitor structural health of monumental objects[J]. Sensors,2020,20(10):2915 doi: 10.3390/s20102915
    [4] Yang F,Fan Z W,Wen C,et al. Three-dimensional point cloud analysis for building seismic damage information[J]. Photogrammetric Engineering & Remote Sensing,2022,88(2):103-111
    [5] 李瑞雪, "基于地面LiDAR数据的建筑物立面识别及提取研究[D]. 赣州: 江西理工大学, 2019

    Li R X. Research on building facade recognition and extraction based research on terrestrial LiDAR data[D]. Ganzhou: Jiangxi University of Science and Technology, 2019
    [6] Vasilakos C,Chatzistamatis S,Roussou O,et al. Terrestrial photogrammetry vs laser scanning for rapid earthquake damage assessment[J]. ISPRS-International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2018,XLII-3/W4:527-533
    [7] Liu W,Dong P L,Liu J B,et al. Evaluation of three-dimensional shape signatures for automated assessment of post-earthquake building damage[J]. Earthquake Spectra,2013,29(3):897-910 doi: 10.1193/1.4000161
    [8] Yang F,Wen X T,Wang X S,et al. A model study of building seismic damage information extraction and analysis on ground-based liDAR data[J]. Advances in Civil Engineering,2021(5):1-14
    [9] Olsen M J,Kuester F,Chang B,et al. Terrestrial laser scanning-based structural damage assessment[J]. Journal of Computing in Civil Engineering,2010,24(3):264-272 doi: 10.1061/(ASCE)CP.1943-5487.0000028
    [10] Ziółkowski P. Remote sensing in laboratory diagnostics of reinforced concrete elements-current development and vision for the future[C] //The IRES 8th International Conference on Engineering and Natural Science, 30th Aug. 2015, London, United Kingdom. 2015: 978-93-85465-83-3
    [11] Li D S,Liu J P,Feng L,et al. Terrestrial laser scanning assisted flatness quality assessment for two different types of concrete surfaces[J]. Measurement,2020,154(3):107436
    [12] 刘兴奇. 地面三维激光扫描仪在建筑物检测中的应用研究[D]. 北京: 北京建筑大学, 2021

    Liu X Q. Application of ground 3D laser scanner in building inspection[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2021
    [13] 赵兴友. 三维激光扫描仪在建筑立面测绘中的应用[J]. 测绘与空间地理信息,2021,44(增刊1):206-212 doi: 10.3969/j.issn.1672-5867.2021.z1.059

    Zhao X Y. Application of 3D laser scanner in building elevation surveying and mapping[J]. Geomatics & Spatital Information Technology,2021,44(S1):206-212 doi: 10.3969/j.issn.1672-5867.2021.z1.059
    [14] 罗奎,王云川,段平,等. 基于地面三维激光扫描仪的塔式建筑物变形监测研究[J]. 测绘与空间地理信息,2021,44(6):76-78,83 doi: 10.3969/j.issn.1672-5867.2021.06.020

    Luo K,Wang Y C,Duan P,et al. Research on deformation monitoring of tower building based on ground 3D laser scanner[J]. Geomatics & Spatital Information Technology,2021,44(6):76-78,83 doi: 10.3969/j.issn.1672-5867.2021.06.020
    [15] 中国建筑科学研究院. 混凝土结构工程施工质量验收规范: GB50204-2015[S]. 北京: 中国建筑工业出版社, 2015

    China Academy of Building Research. Code for acceptance of constructional quality of concrete structures: GB50204-2015[S]. Beijing: China Architecture & Building Press, 2015
    [16] 陕西省住房和城乡建设厅. 砌体结构工程施工质量验收规范: GB 50203-2011 [S]. 北京: 中国建筑工业出版社, 2011

    Shaanxi Department of Housing and Urban-Rural Development. Code for acceptance of constructional quality of masonry structures: GB 50203-2011 [S]. Beijing: China Architecture & Building Press, 2011
    [17] Kim M,Wang Q,Yoon S,et al. A mirror-aided laser scanning system for geometric quality inspection of side surfaces of precast concrete elements[J]. Measurement,2019,141:420-428 doi: 10.1016/j.measurement.2019.04.060
    [18] Sun W,Wang J,Jin F,et al. Datum feature extraction and deformation analysis method based on normal vector of point cloud[J]. ISPRS - International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2018,XLII-3:1601-1606
    [19] Tang P,Huber D,Akinci B,et al. Automatic reconstruction of as-built building information models from laser-scanned point clouds:A review of related techniques[J]. Automation in Construction,2010,19(7):829-843 doi: 10.1016/j.autcon.2010.06.007
    [20] Pătrăucean V,Armeni I,Nahangi M,et al. State of research in automatic as-built modelling[J]. Advanced Engineering Informatics,2015,29(2):162-171 doi: 10.1016/j.aei.2015.01.001
    [21] Lu Q,Lee S,ASCE A. Image-based technologies for constructing as-is building information models for existing buildings[J]. Journal of Computing in Civil Engineering,2017,31(4):04017005 doi: 10.1061/(ASCE)CP.1943-5487.0000652
    [22] Son H,Bosché F,Kim C. As-built data acquisition and its use in production monitoring and automated layout of civil infrastructure:A survey[J]. Advanced Engineering Informatics,2015,29(2):172-183 doi: 10.1016/j.aei.2015.01.009
    [23] Ma Z,Liu S. A review of 3D reconstruction techniques in civil engineering and their applications[J]. Advanced Engineering Informatics,2018,37:163-174 doi: 10.1016/j.aei.2018.05.005
    [24] Ray S J,Teizer J. Computing 3D blind spots of construction equipment:Implementation and evaluation of an automated measurement and visualization method utilizing range point cloud data[J]. Automation in Construction,2013,36:95-107 doi: 10.1016/j.autcon.2013.08.007
    [25] Cheng T,Teizer J. Real-time resource location data collection and visualization technology for construction safety and activity monitoring applications[J]. Automation in Construction,2013,34:3-15 doi: 10.1016/j.autcon.2012.10.017
    [26] Fang Y,Cho Y K,Chen J. A framework for real-time pro-active safety assistance for mobile crane lifting operations[J]. Automation in Construction,2016,72:367-379 doi: 10.1016/j.autcon.2016.08.025
    [27] Nowak R,Orłowicz R,Rutkowski R. Use of tls(LiDAR) for building diagnostics with the example of a historic building in karlino[J]. Buildings,2020,10(2):24 doi: 10.3390/buildings10020024
    [28] Dong P L,Guo H D. A framework for automated assessment of post-earthquake building damage using geospatial data[J]. International Journal of Remote Sensing,2012,33(1):81-100 doi: 10.1080/01431161.2011.582188
    [29] Xu W,Xu X Y,Yang H,et al. Optimized finite element analysis model based on terrestrial laser scanning data[J]. Composite Structures,2019,207:62-71 doi: 10.1016/j.compstruct.2018.09.006
    [30] Antón D,Pineda P,Medjdoub B,et al. As-built 3D heritage city modelling to support numerical structural analysis:application to the assessment of an archaeological remain[J]. Remote Sensing,2019,11:1276 doi: 10.3390/rs11111276
    [31] Russhakim N A S,Ariff M F M,Darwin N,et al. The suitability of terrestrial laser scanning for strata building[J]. ISPRS - International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2018,XLII-4/W9:67-76
    [32] Antón D,Medjdoub B,Shrahily R,et al. Accuracy evaluation of the semi-automatic 3D modeling for historical building information models[J]. International Journal of Architectural Heritage,2018,12(5):790-805 doi: 10.1080/15583058.2017.1415391
    [33] Yang H,Omidalizarandi M,Xu X Y,et al. Terrestrial laser scanning technology for deformation monitoring and surface modeling of arch structures[J]. Composite Structures,2016,169(5):173-179
    [34] 李敏珍,刘春,周源. 激光扫描历史建筑精细化重建与部件化管理[J]. 遥感信息,2015,30(6):18-23 doi: 10.3969/j.issn.1000-3177.2015.06.004

    Li M Z,Liu C,Zhou Y. Historical accurate 3D reconstruction and hierarchical componentize management using terrestrial laser scanning[J]. Remote Sensing Information,2015,30(6):18-23 doi: 10.3969/j.issn.1000-3177.2015.06.004
    [35] 沈蔚,李京,陈云浩,等. 基于LIDAR数据的建筑轮廓线提取及规则化算法研究[J]. 遥感学报,2008,12(5):692-698

    Shen W,Li J,Chen Y H,et al. Algorithms study of building boundary extraction and normalization based on LIDAR data[J]. Journal of Remote Sensing,2008,12(5):692-698
    [36] 王大莹,程新文,郑艳丽,等. 在Matlab平台下基于形态学方法对LIDAR数据进行建筑物边缘提取[J]. 测绘科学,2010,35(1):172-173,92 doi: 10.16251/j.cnki.1009-2307.2010.01.039

    Wang D Y,Cheng X W,Zheng Y L,et al. Mathematic morphology-based building edge detection under Matlab platform[J]. Science of Surveying and Mapping,2010,35(1):172-173,92 doi: 10.16251/j.cnki.1009-2307.2010.01.039
    [37] 孟涛,王轲,任峰,等. 基于曲线内插法的点云空洞修补应用研究[J]. 测绘与空间地理信息,2021,44(11):173-175 doi: 10.3969/j.issn.1672-5867.2021.11.049

    Meng T,Wang K,Ren F,et al. Research on the application of point-cloud holes' repair algorithm based on curve interpolation method[J]. Geomatics & Spatital Information Technology,2021,44(11):173-175 doi: 10.3969/j.issn.1672-5867.2021.11.049
    [38] 朱滨,程小龙,刘绍龙,等. 基于PCA法矢估计的建筑点云立面边界提取[J]. 测绘与空间地理信息,2021,44(6):38-40 doi: 10.3969/j.issn.1672-5867.2021.06.011

    Zhu B,Cheng X L,Liu S L,et al. Building point cloud elevation boundary extraction based on PCA normal vector estimation[J]. Geomatics & Spatital Information Technology,2021,44(6):38-40 doi: 10.3969/j.issn.1672-5867.2021.06.011
    [39] 周强,张敏,李巍,等. 基于点云数据的古陶瓷碎片边缘轮廓提取技术[J]. 陕西科技大学学报,2021,39(6):174-181 doi: 10.3969/j.issn.1000-5811.2021.06.027

    Zhou Q,Zhang M,Li W,et al. Edge contour extraction of ancient ceramic fragments based on point cloud data[J]. Journal of Shaanxi University of Science & Technology,2021,39(6):174-181 doi: 10.3969/j.issn.1000-5811.2021.06.027
    [40] 廖中平,陈立,白慧鹏,等. 自适应α-shapes平面点云边界提取方法[J]. 长沙理工大学学报(自 然 科 学 版),2019,16(2):15-21

    Liao Z P,Chen L,Bai H P,et al. Adaptive Alpha shapes plane point cloud boundary extraction method[J]. Journal of Changsha University of Science and Technology( Natural Science ),2019,16(2):15-21
    [41] Nasrollahi M, Bolourian N, Hammad A. Concrete surface defect detection using deep neural network based on LiDAR scanning [C]// (CSCE 2019) 7th International Construction Conference jointly with the construction research congress(CRC 2019). Laval, QC: CSCE Annual Conference, 2019: CON032
    [42] Mohammadi M E,Watson D,Wood R. Deep learning-based damage detection from aerial SfM point clouds[J]. Drones,2019,3(3):68 doi: 10.3390/drones3030068
    [43] 卢凌雯,梁栋栋. 点云数据多种滤波方式组合优化研究[J]. 安徽师范大学学报(自然科学版),2018,41(1):50-54

    Lu L W,Liang D D. Research on combining optimization of various filtering methods for point cloud data[J]. Journal of Anhui Normal University (Natural Science),2018,41(1):50-54
    [44] 陈茂霖. 面向多测站地面三维激光扫描数据的建筑物提取与几何重构[D]. 武汉: 武汉大学, 2018

    Chen M L. Building extraction and 3D reconstruction of multi-scan terrestrial laser scanning data[D]. Wuhan: Wuhan University, 2018
    [45] Saraf N, Hamid J, Halim M, et al. Accuracy assessment of 3-dimensional liDAR building extraction[C] //2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA). Penang, Malaysia: IEEE, 2018: 261-266
    [46] 赵传,张保明,郭海涛,等. 基于法向量密度聚类的LiDAR点云屋顶面提取[J]. 测绘科学技术学报,2017,34(4):393-398

    Zhao C,Zhang B M,Guo H T,et al. Roof extraction using liDAR point clouds based on normal vector density-based clustering[J]. Journal of Geomatics Science and Technology,2017,34(4):393-398
    [47] 陈朋,谭晔汶,李亮. 地面三维激光扫描建筑物点云特征线提取[J]. 激光杂志,2016,37(3):9-11 doi: 10.14016/j.cnki.jgzz.2016.03.009

    Chen P,Tan Y W,Li L. Extraction of building's feature lines based on 3-D terrestrial laser scanning[J]. Laser Journal,2016,37(3):9-11 doi: 10.14016/j.cnki.jgzz.2016.03.009
    [48] Shao Z F,Yang N,Xiao X W,et al. A multi-view dense point cloud generation algorithm based on low-altitude remote sensing images[J]. Remote Sensing,2016,8(5):381 doi: 10.3390/rs8050381
    [49] Jiao Q S,Jiang H B,Li Q. Building earthquake damage analysis using terrestrial laser scanning data[J]. Advances in Civil Engineering,2019:8308104
    [50] Jiang H B,Li Q,Jiao Q S,et al. Extraction of wall cracks on earthquake-damaged buildings based on tls point clouds[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(9):3088-3096 doi: 10.1109/JSTARS.2018.2857564
    [51] 崔驿宁. 基于3D深度学习的LiDAR建筑物震害信息提取[D]. 北京: 中国地震局地震预测研究所, 2021

    Cui Y N. Seismic damage information extraction of liDAR building based on 3D deep learning[D]. Beijing: Institute of Earthquake Forecasting, China Earthquake Administration, 2021
    [52] Zhang J M,Lu C Q,Wang J,et al. Concrete cracks detection based on fcn with dilated convolution[J]. Applied Sciences,2019,9(13):2686 doi: 10.3390/app9132686
    [53] Liao Y J,Wood R,Mohammadi M E,et al. Damage assessment of a sixteen story building following the 2017 central mexico earthquake[J]. Civil Engineering Faculty Publications,2019:157
    [54] Turkan Y,Hong J,Laflamme S,et al. Adaptive wavelet neural network for terrestrial laser scanner-based crack detection[J]. Automation in Construction,2018,94:191-202 doi: 10.1016/j.autcon.2018.06.017
    [55] Rastiveis H,Khodaverdi N,Jouybari A. Object-oriented classification of lidar data for post-earthquake damage detection[J]. ISPRS - International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2018,XLII-3/W4:421-427
    [56] Puente I,Lindenbergh R,Van Natijne A,et al. Monitoring of progressive damage in buildings using laser scan data[J]. ISPRS - International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2018,XLII-2:923-929
    [57] Janalipour M,Mohammadzadeh A. Evaluation of effectiveness of three fuzzy systems and three texture extraction methods for building damage detection from post-event liDAR data[J]. International Journal of Digital Earth,2018,11(12):1241-1268 doi: 10.1080/17538947.2017.1387818
    [58] He M Z,Zhu Q,Du Z Q,et al. A 3D shape descriptor based on contour clusters for damaged roof detection using airborne liDAR point clouds[J]. Remote Sensing,2016,8(3):189 doi: 10.3390/rs8030189
    [59] Pellegrinelli A,Furini A,Russo P. Earthquakes and ancient leaning towers:Geodetic monitoring of the bell tower of San Benedetto Church in Ferrara (Italy)[J]. Journal of Cultural Heritage,2014,15(6):687-691 doi: 10.1016/j.culher.2013.12.005
  • 加载中
图(1)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  31
  • PDF下载量:  1
出版历程
  • 收稿日期:  2022-11-17
  • 录用日期:  2022-12-26
  • 网络出版日期:  2023-02-23

目录

    /

    返回文章
    返回
    本系统由北京仁和汇智信息技术有限公司设计开发 百度统计