Typical interference analysis of FHD-2B observation data at Datong seismic station
-
摘要: 山西省大同地震监测中心站FHD-2B地磁观测数据质量主要受仪器自身观测系统和周围环境干扰影响,由于仪器出厂后性能接近稳定,因此要提高观测数据质量,可以从改善环境干扰入手。本文从连续率、完整率和背景噪声三个方面对2017年至2021年的观测数据进行质量评价,发现自2019年6月仪器更新改造后,仪器背景噪声水平明显降低。通过分析场地施工、车辆运行、高压直流输电、断电等典型干扰事件下的数据曲线形态,发现施工干扰一般表现为各分量受干扰时段一致,干扰幅度不同;高压直流输电干扰常表现为Z分量干扰严重,可以通过国家地磁台网中心给出的干扰时段,结合周边地磁台站数据进行处理;车辆干扰对数据各分量均产生干扰,对应于车辆活动时段;断电干扰表现为D、H、Z分量观测数据曲线变粗,毛刺增多,甚至出现错误数据,通过修改仪器参数解决。总结不同干扰曲线特征,便于工作人员正确使用FHD-2B地磁数据,进行地震研究。Abstract: The geomagnetic observation data of FHD-2B at Datong seismic station in Shanxi is mainly affected by the interference of the instrument's own observation system and the surrounding environment. Since the performance of the instrument is nearly stable after delivery, we can improve the quality of observation data by improving the environment. In this paper, the quality of observation data from 2017 to 2021 is evaluated from three aspects: continuity rate, integrity rate and background noise, and it is found that the background noise level of the instrument has been significantly reduced since the instrument was updated in June 2019. By analyzing the data curves of different interferences such as construction interference, vehicle interference, high-voltage direct current transmission interference and power failure, it is found that the construction interference is generally manifested in the same period of time when each component is interfered, and the interference amplitude is different; The interference of high-voltage direct current transmission is usually serious in Z component, which can be processed through the interference period given by the National Geomagnetic Network Center and combined with the data of surrounding geomagnetic stations; Vehicle interference interferes with each component of data, corresponding to vehicle activity period; The power failure interference shows that the observed data curves of D, H and Z components become thicker, burrs increase, and even wrong data appear, which can be solved by modifying the parameters of the instrument home page. The characteristics of different interference curves are summarized, which is convenient for workers to use FHD-2B geomagnetic data correctly for seismic research.
-
Key words:
- FHD-2B /
- geomagnetism /
- quality evaluation /
- interference /
- Datong
-
表 1 2017年—2021年大同站FHD仪数据连续率、完整率
Table 1. The continuity rate and integrity rate of FHD data from 2017 to 2021
年份 连续率(%) 完整率(%) H D F H D F 2017年 99.94 99.94 99.94 99.52 99.41 99.68 2018年 99.73 99.73 99.73 99.67 99.66 99.67 2019年 98.44 98.44 98.44 98.25 98.25 98.24 2020年 99.79 99.79 99.79 99.26 99.26 99.61 2021年 99.99 99.99 99.99 99.99 99.99 99.99 表 2 2018—2020年晋南线干扰统计表
Table 2. Statistics of interference of Jinnan transmission from 2018 to 2020
干扰时段 大同 太原 代县 定襄 幅度(nT) 幅度(nT) 比值 幅度(nT) 比值 幅度(nT) 比值 2018/2/21 16:13-16:18 −0.7 1.6 −2.286 −17.4 24.857 9 −12.857 2018/2/21 16:19-16:21 0.7 −1.6 −2.286 17.4 24.857 −9 −12.857 2018/6/9 12:10-12:12 −0.5 1.2 −2.400 −13.1 26.200 6.8 −13.600 2018/6/9 12:31-12:33 0.5 −1.2 −2.400 13.1 26.200 −6.8 −13.600 2018/6/15 7:29-07:31 −1.8 4 −2.222 −43.4 24.111 22.5 −12.500 2018/6/15 11:26-11:29 1.8 −4 −2.222 43.4 24.111 −22.5 −12.500 2019/3/25 16:34-16:36 −2.1 4.7 −2.238 −51.3 24.429 26.6 −12.667 2019/3/25 19:02-19:05 2.1 −4.7 −2.238 51.3 24.429 −26.6 −12.667 2019/4/28 17:43-17:54 −2.1 4.8 −2.286 −52.3 24.905 27.2 −12.952 2019/4/28 20:32-20:35 2.1 −4.8 −2.286 52.4 24.952 −27.2 −12.952 2019/5/22 17:53-18:08 2.1 −4.8 −2.286 52.1 24.810 −27.1 −12.905 2019/5/22 18:45-18:48 −2.1 4.8 −2.286 −52.2 24.857 27.1 −12.905 2019/5/29 17:26-17:29 2.1 −4.8 −2.286 52.1 24.810 −27.1 −12.905 2019/5/29 19:40-19:43 −2.1 4.8 −2.286 −52.2 24.857 27.1 −12.905 2019/5/29 20:43-20:57 −1.4 3.2 −2.286 −34.8 24.857 18.1 −12.929 2019/5/29 20:57-20:59 −0.7 1.6 −2.286 −17 24.286 8.8 −12.571 2019/5/29 21:18-21:20 2.1 −4.8 −2.286 51.8 24.667 −26.9 −12.810 2020/3/9 6:26-6:36 2.1 −4.7 −2.238 50.7 24.143 −26.3 −12.524 2020/3/9 8:21-8:24 −2.1 4.7 −2.238 −50.7 24.143 26.3 −12.524 2020/5/23 11:54-11:59 −1.4 3.1 −2.214 −33.8 24.143 17.5 −12.500 2020/5/23 12:44-12:46 1.4 −3.1 −2.214 33.8 24.143 −17.5 −12.500 2020/6/9 14:51-14:58 2.1 −4.8 −2.286 51.9 24.714 −26.9 −12.810 2020/6/9 14:59-15:01 −2.1 4.8 −2.286 −51.9 24.714 26.9 −12.810 2020/6/9 15:01-15:06 −2.1 4.8 −2.286 −52.3 24.905 27.1 −12.905 2020/6/9 15:07-15:09 2.1 −4.8 −2.286 52.3 24.905 −27.1 −12.905 -
[1] 闫小兵,周永胜,李自红,等. 1695年临汾7 3/4级地震发震构造研究[J]. 地震地质,2018,40(4):883-902 doi: 10.3969/j.issn.0253-4967.2018.04.012Yan X B,Zhou Y S,Li Z H,et al. A study on the seismogenic structure of Linfen M7 3/4 earthquake in 1695[J]. Seismology and Geology,2018,40(4):883-902 doi: 10.3969/j.issn.0253-4967.2018.04.012 [2] 闫小兵,周永胜,李自红,等. 山西浮山断裂的晚第四纪活动与位移速率[J]. 地震地质,2022,44(1):35-45 doi: 10.3969/j.issn.0253-4967.2022.01.003Yan X B,Zhou Y S,Li Z H,et al. The late quaternary activity and displacement rate of Fushan fault in Shanxi[J]. Seismology and Geology,2022,44(1):35-45 doi: 10.3969/j.issn.0253-4967.2022.01.003 [3] 曾金艳,李自红,陈文,等. 运城盆地盐湖南岸断层晚第四纪活动特征研究[J]. 第四纪研究,2020,40(1):124-131 doi: 10.11928/j.issn.1001-7410.2020.01.12Zeng J Y,Li Z H,Chen W,et al. Study on the activity characteristics of the south bank fault of Yuncheng salt lake in Yuncheng basin since the late quaternary[J]. Quaternary Sciences,2020,40(1):124-131 doi: 10.11928/j.issn.1001-7410.2020.01.12 [4] 彭洪军. FHD质子矢量磁力仪资料预处理分析[J]. 科技与创新,2019(18):145-146 doi: 10.15913/j.cnki.kjycx.2019.18.062Peng H J. Data preprocessing analysis of FHD proton vector magnetometer[J]. Science and Technology & Innovation,2019(18):145-146 doi: 10.15913/j.cnki.kjycx.2019.18.062 [5] 李庆武,胡秀娟,张玉林,等. 丰宁台FHD仪背景噪声减小措施分析[J]. 山西地震,2019(4):48-51 doi: 10.3969/j.issn.1000-6265.2019.04.013Li Q W,Hu X J,Zhang Y L,et al. Analysis of background noise reduction measures of FHD instrument in Fengning Station[J]. Earthquake Research in Shanxi,2019(4):48-51 doi: 10.3969/j.issn.1000-6265.2019.04.013 [6] 陈贤,黄恩贤,成万里,等. 信阳台FHD地磁仪观测数据典型干扰识别及数据处理[J]. 地下水,2020,42(2):101-103 doi: 10.19807/j.cnki.DXS.2020-02-037Chen X,Huang E X,Cheng W L,et al. Typical interference identification and data processing of observation data of FHD magnetometer in Xinyang station[J]. Ground Water,2020,42(2):101-103 doi: 10.19807/j.cnki.DXS.2020-02-037 [7] 郭灏明. 盐城台地磁观测干扰特征分析[J]. 四川地震,2022(3):33-36 doi: 10.13716/j.cnki.1001-8115.2022.03.007Guo H M. Analysis of the disturbance factors of geomagnetic observation at Yancheng Seismic Station[J]. Earthquake Research in Sichuan,2022(3):33-36 doi: 10.13716/j.cnki.1001-8115.2022.03.007 [8] 何宇飞,夏忠,李军,等. FHD质子磁力仪改进研究进展[J]. 国际地震动态,2019(11):20-26 doi: 10.3969/j.issn.0253-4975.2019.11.004He Y F,Xia Z,Li J,et al. Progress of the improved FHD proton magnetometer[J]. Recent Developments in World Seismology,2019(11):20-26 doi: 10.3969/j.issn.0253-4975.2019.11.004 [9] 山西省地震局. 山西省地震监测志[M]. 北京: 地震出版社, 2006: 54Shanxi Earthquake Agency. Records of seismic monitoring in Shanxi Province[M]. Beijing: Seismological Press, 2006: 54 [10] 胡秀娟,李细顺,王利兵,等. 红山台磁通门磁力仪观测数据对比分析[J]. 华北地震科学,2014,32(2):68-72 doi: 10.3969/j.issn.1003-1375.2014.02.013Hu X J,Li X S,Wang L B,et al. Contrastive analysis of fluxgate magnetometer observation at Hongshan Seismis Station[J]. North China Earthquake Sciences,2014,32(2):68-72 doi: 10.3969/j.issn.1003-1375.2014.02.013 [11] 沈红会,张秀霞,冯志生,等. 减小直流输电对地磁观测影响的几种办法[J]. 中国地震,2005,21(4):530-535 doi: 10.3969/j.issn.1001-4683.2005.04.010Shen H H,Zhang X X,Feng Z S,et al. The countermeasures to the influence of direct current transitting to geomagnetic observation[J]. Earthquake Research in China,2005,21(4):530-535 doi: 10.3969/j.issn.1001-4683.2005.04.010 [12] 蒋延林,张秀霞,杨冬梅,等. 高压直流输电对地磁观测影响的特征分析[J]. 地震,2014,34(3):132-139 doi: 10.3969/j.issn.1000-3274.2014.03.013Jiang Y L,Zhang X X,Yang D M,et al. Influnce charactersistics of high voltage direct current transmission on geomagnetic observation[J]. Earthquake,2014,34(3):132-139 doi: 10.3969/j.issn.1000-3274.2014.03.013 -