zhenbo

ISSN 2096-7780 CN 10-1665/P

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四川盐源干海双井水位观测干扰分析

蒋川 杨志鹏 王登伟 文朗 李祥豪 李瑞瑞

蒋川, 杨志鹏, 王登伟, 文朗, 李祥豪, 李瑞瑞. 四川盐源干海双井水位观测干扰分析[J]. 地震科学进展. doi: 10.19987/j.dzkxjz.2022-131
引用本文: 蒋川, 杨志鹏, 王登伟, 文朗, 李祥豪, 李瑞瑞. 四川盐源干海双井水位观测干扰分析[J]. 地震科学进展. doi: 10.19987/j.dzkxjz.2022-131
Jiang Chuan, Yang Zhipeng, Wang Dengwei, Wen Lang, Li Xianghao, Li Ruirui. Interference analysis of the water level observation at Ganhai Double Wells in Yanyuan County, Sichuan Province[J]. Progress in Earthquake Sciences. doi: 10.19987/j.dzkxjz.2022-131
Citation: Jiang Chuan, Yang Zhipeng, Wang Dengwei, Wen Lang, Li Xianghao, Li Ruirui. Interference analysis of the water level observation at Ganhai Double Wells in Yanyuan County, Sichuan Province[J]. Progress in Earthquake Sciences. doi: 10.19987/j.dzkxjz.2022-131

四川盐源干海双井水位观测干扰分析

doi: 10.19987/j.dzkxjz.2022-131
基金项目: 中国地震局三结合项目(3JH-202301012)、四川省地震局地震科技专项项目(LY2228)和凉山地震监测预报能力研究(18YYJS0101)联合资助。
详细信息
    作者简介:

    蒋川(1986-),男,助理工程师,从事地下流体观测工作。E-mail:2356321078@qq.com

    通讯作者:

    杨志鹏(1993-),男,助理工程师,主要从事地球物理前兆信号处理分析研究方面的工作。E-mail:3082109282@qq.com

Interference analysis of the water level observation at Ganhai Double Wells in Yanyuan County, Sichuan Province

  • 摘要: 依据观测日志、降雨、水温监测和周边调查,对四川盐源干海双井水位观测干扰事件进行了详细的分类,按分类统计了干海井和干海机井干扰特征,以更加准确有效地识别与排除干扰。针对发生最为频繁的且对正常观测影响最大的堵塞和人为清洗干扰提出了初步技术解决方案。氢氧同位素分析结果表明双井井水受大气降雨补给,可通过收集降雨、河水资料来识别降雨干扰。

     

  • 图  1  干海双井区域构造及位置分布图

    Figure  1.  The regional structure and location map of Ganhai double wells

    图  2  干海机井—干海井地质剖面图(据盐源幅地质图绘制)

    Figure  2.  The geological profile of Ganhai double wells (On the basis of the geological map of Yanyuan County)

    图  3  干海双井水位时序图

    注:干海机井水位数据变小表示水位升高,下同

    Figure  3.  The water level sequence diagram of the Ganhai double wells

    图  4  干海井堵塞干扰图

    Figure  4.  Blockage interference figure of the Ganhai well

    图  5  干海井人为清洗干扰图

    Figure  5.  The cleaning interference figure of the Ganhai well

    图  6  干海双井装置示意图

    Figure  6.  The device schematic drawing of Ganhai double wells

    图  8  干海机井降雨干扰分析图

    Figure  8.  Rainfall interference analysis diagram of Ganhaiji well

    图  9  干海井降雨干扰分析图

    Figure  9.  Rainfall interference analysis diagram of Ganhai well

    图  7  干海双井 δ18O-δD 同位素和水化学piper图

    Figure  7.  Hydrogen isotope and Water chemistry piper diagram of Ganhai double wells

    图  10  干海双井不明原因干扰分析图

    Figure  10.  The unexplained interference analysis diagram of Ganhai double wells

    图  11  其它原因干扰分析图

    Figure  11.  Analysis diagram of the interference from other causes

    表  1  干海双井基础信息

    Table  1.   The basic information of Ganhai double wells

    观测点经度/°纬度/°海拔/m钻孔深度/m仪器类型监测频率类型数字化测项
    干海井 101.46 27.48 2286 79 SWY-Ⅱ型数字式水位仪 1次/分钟 动水位 气氡、水位、水温、气温、气压、降雨量
    干海机井 101.47 27.47 2303 187 ZKGD3000-N型 1次/分钟 动水位 水位、水温、气压
    下载: 导出CSV

    表  2  水位正常动态类型

    Table  2.   Dynamic types of the normal water level

    大类基本类型说明
    多年趋势动态 趋势上升型 不多见,只见于油气田外围地区,大面积长期注水
    趋势下降型 地下水过量开采,开采量超过大气降雨的渗入补给
    趋势平稳型 开采量与补给量均衡/含水层封闭
    年动态 上升、下降、平稳、起伏型
    月、多日、日动态 固体潮效应微动态
    气压效应微动态
    下载: 导出CSV

    表  3  2021年干海双井干扰统计表

    Table  3.   The interference statistics of Ganhai double wells, in 2021

    监测点干扰类型发生次数干扰特征
    持续时间/分钟数据变化幅度/m
    最长时间平均时间最大变化幅度平均变化幅度
    干海机井 7 1050 607.1 0.18 0.13
    人为(抽水灌溉) 1 170 170.0 0.16 0.16
    降雨 4 1050 705.0 0.18 0.13
    不明原因 2 810 630.0 0.14 0.11
    干海井 54 1800 139.4 0.76 0.07
    人为(维护水温观测装置) 3 157 89.3 0.1 0.08
    人为(清洗) 37 1800 93.2 0.31 0.05
    人为(改造井口装置) 3 120 50.0 0.76 0.39
    降雨 2 360 265.5 0.04 0.03
    观测系统堵塞 3 270 96.7 0.02 0.02
    不明原因 6 1320 473.8 0.1 0.05
    下载: 导出CSV

    表  4  干海双井水化学成分及氢氧同位素分析结果

    Table  4.   Water chemical composition and hydrogen isotope analysis results of Ganhai double wells

    观测点δD/‰δ18O/‰Na+K+Mg2+Ca2+ClSO42−CO32−HCO3井水类型
    mg/L
    干海井 −108.9 −14.7 161.2 1 4.1 37.5 105.4 15.9 0 303.2 HCO3·Cl-Na
    干海机井 −121.5 −16.3 773.2 4.8 28 111.2 1514.3 29.2 0 287.7 Cl-Na
    下载: 导出CSV

    表  5  地表水体渗入补给干扰的最大影响距离

    Table  5.   The Maximum influence distance from the surface water infiltration recharge interference

    井区水文地质条件分区含水层渗透性分级最大影响距离/km
    简单地区弱透水层1
    中等地区透水层5
    复杂地区强透水层10
    下载: 导出CSV

    表  6  地表水荷载作用干扰的最大影响距离

    Table  6.   The max impact distance of surface water load disturbance

    荷载作用类型最大影响距离/km
    海潮荷载作用10
    水库荷载作用6
    江河水体荷载作用粗砂与砾石含水层5 km
    中砂含水层3 km
    细砂与粉砂含水层1 km
    下载: 导出CSV
  • [1] 汪成民, 车用太, 万迪堃, 等. 地下水微动态研究[M]. 北京: 地震出版社, 1988

    Wang C M, Che Y T, Wan D K , et al. Study of micro-behavior of groundwater [M]. Beijing: Seismological Press, 1988
    [2] 潘国勇, 王军. 崇明地震台新井水位干扰成因分析与改进措施[J]. 科技与创新, 2020(16): 4-5, 9

    Pan G Y, Wang J. Cause analysis and improvement measures of water level interference in the new well at Chongming seismic station[J]. Science and Technology & Innovation, 2020(16): 4-5, 9(作者自己翻译)
    [3] 张肇诚. 中国震例(1976-1980)[M]. 北京: 地震出版社, 1990

    Zhang Z C. Earthquake cases in China(1976-1980)[M]. Beijing: Seismological Press, 1990
    [4] 汤秀山, 吴家寿. 盐源5.4级地震前的宏观异常现象[J]. 四川地震 1987(2): 16-18

    Tang X S, Wu J S. Macro-abnormal phenomena before the Yanyuan M5.4 earthquake[J]. Earthquake Research in Sichuan, 1987(2): 16-18(作者自己翻译)
    [5] 向宏发,徐锡伟,虢顺民,等. 丽江—小金河断裂第四纪以来的左旋逆推运动及其构造地质意义−陆内活动地块横向构造的屏蔽作用[J]. 地震地质,2002,24(2):188-198 doi: 10.3969/j.issn.0253-4967.2002.02.006

    Xiang H F,Xu X W,Guo S M,et al. Sinistral thrusting along the Lijiang-Xiaojinhe fault since quaternary and its geologic-tectonic significance—shielding effect of transverse structure of intracontinental active block[J]. Seismology and Geology,2002,24(2):188-198 doi: 10.3969/j.issn.0253-4967.2002.02.006
    [6] 邓起东,张培震,冉勇康,等. 中国活动构造基本特征[J]. 中国科学(D辑),2003,46(4):356-372

    Deng Q D,Zhang P Z,Ran Y K,et al. Basic characteristics of active tectonics of China[J]. Science in China(Series D),2003,46(4):356-372
    [7] 徐锡伟,闻学泽,郑荣章,等. 川滇地区活动块体最新构造变动样式及其动力来源[J]. 中国科学(D辑),2003,46(增刊1):210-226

    Xu X W,Wen X Z,Zheng R Z,et al. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region,China[J]. Science in China(Series D),2003,46(S1):210-226
    [8] 季灵运,刘立炜,郝明. 利用InSAR技术研究滇西南镇康—永德地区现今地壳形变特征[J]. 地震研究,2015,38(1):84-89

    Ji L Y,Liu L W,Hao M. Crustal deformation characteristic of Zhenkang-Yongde region in southwest Yunnan observed by InSAR technology[J]. Journal of Seismological Research,2015,38(1):84-89
    [9] 李宁,朱良玉,刘雷. 丽江—小金河断裂带现今闭锁程度与地震危险性分析[J]. 地震研究,2018,41(2):244-250

    Li N,Zhu L Y,Liu L. Study on present-day locking degree and seismic hazard of the Lijiang-Xiaojinhe fault zone[J]. Journal of Seismological Research,2018,41(2):244-250
    [10] 全建军,郑永通,陈美梅,等. 地下流体数据跟踪分析的事件判别方法及分析流程[J]. 华北地震科学,2021,39(1):97-104

    Quan J J,Zheng Y T,Chen M M,et al. Event discrimination method and procedure for tracking and analysis of underground fluid data[J]. North China Earthquake Sciences,2021,39(1):97-104
    [11] 杨耀,周晓成,官致君,等. 川西地下流体观测井水文地球化学特征[J]. 矿物岩石地球化学通报,2019,38(5):966-976 doi: 10.19658/j.issn.1007-2802.2019.38.103

    Yang Y,Zhou X C,Guan Z J,et al. Hydrogeochemical characteristics of groundwater in seismic observation wells in the western Sichuan[J]. Bulletin Of Mineralogy,Petrology and Geochemistry,2019,38(5):966-976 doi: 10.19658/j.issn.1007-2802.2019.38.103
    [12] 车用太,鱼金子,刘成龙,等. 地下流体动态的观测环境干扰影响距离研究[J]. 国际地震动态,2006(4):10-16

    Che Y T,Yu J Z,Liu C L,et al. Study on influence distance of some interference sources around the station to the behavior of underground fluid[J]. Recent Developments in World Seismology,2006(4):10-16
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  22
  • PDF下载量:  2
出版历程
  • 收稿日期:  2022-08-29
  • 录用日期:  2022-11-30
  • 网络出版日期:  2023-02-27

目录

    /

    返回文章
    返回
    本系统由北京仁和汇智信息技术有限公司设计开发 百度统计