Advancement in geophysics and continental dynamics of the Tibetan Plateau: Review of the WTGTP2020
-
摘要: 印度板块与欧亚板块的碰撞是新生代全球最重要的地质事件,由此青藏高原快速隆升,成为了世界第三极,并不断向外扩展,其内部大型断裂体系发育、地质构造复杂、地震及火山活动性强烈。青藏高原东部及其周边地区作为研究高原隆升、深部变形的动力学机制的天然试验场,也是国际地学领域、地球物理与大陆动力学领域的一个重要焦点。本文根据第八届青藏高原东部构造与地球物理研讨会(WTGTP2020)的学术报告,对高原深部结构与动力学研究的一些新进展进行阐述。本次研讨会对青藏高原及其周边地区岩石圈结构、变形机制及物质运移动力学模式等关键问题进行了较为系统的讨论,围绕青藏高原的形成演化历史,从深部构造与岩浆变质响应,到浅部地表过程以及其对资源气候的影响进行探讨研究,将地球深部动力学、地表过程和气候变化等不同圈层的相互作用有机地联系在一起。Abstract: The collision between the Indian and the Eurasian plates is the most important geological event in the world since the Cenozoic. And the Tibetan Plateau has risen rapidly, becoming the world’s third pole and expanding outward continuously. There are development of active fault zones, complicated geological structure, strong seismicity and volcanic activity. The Tibetan Plateau and its surrounding areas as a natural experimental site for studying the dynamic mechanism of plateau uplift and deep structure deformation, are also an important focus in the fields of geosciences, geophysics and continental dynamics. Based on the academic report of WTGTP2020, this paper expounds some new progress in the study of deep structure and dynamics of the Tibetan Plateau. This seminar systematically discussed topics such as lithosphere structure, structure deformation mechanism, material migration dynamics pattern in the Tibetan Plateau. Based on the formation and evolution history of the Tibetan Plateau, the deep structure and magmatic metamorphic response, the shallow surface process and its impact on resources and climate are discussed. This organically links the interaction of different spheres such as deep geophysics, continental dynamics, surface processes and climate change.
-
表 1 第八届青藏高原东部构造与地球物理研讨会(WTGTP2020)学术报告日程
Table 1. Academic report schedule of the 8th workshop on tectonics and geophysics in the east part of Tibetan Plateau (WTGTP020)
场次 报告人 报告题目 时间 第1场 丁林 青藏高原东部由低地沙漠向高山森林的转变过程 9月17日 姚华建 青藏高原精细地壳结构与变形 第2场 高锐 深地震反射剖面揭露青藏高原陆陆碰撞过程 9月24日 张伟 青藏高原东缘地震波数值模拟方法进展 第3场 陈晓非 地震背景噪声高阶面波成像方法及其应用 10月13日 陈凌 伊朗高原地质与地球物理研究进展 第4场 张培震 青藏高原东北部晚新生代构造变形与形成过程 10月28日 王勤 喜马拉雅造山带和大别山—苏鲁造山带的构造演化 第5场 侯增谦 地幔通道流:青藏高原大规模生长的深部机制 11月16日 张会平 青藏高原东缘晚新生代幕式剥露过程与地貌演化 第6场 徐义刚 青藏东部—滇西岩浆作用与深部过程 11月24日 宋晓东 世界屋脊是如何建成的? 青藏高原岩石圈结构与变形 -
[1] 吴功建. 当代地球物理学的发展[J]. 地球物理学进展,1991,6(4):1-5Wu Gongjian. The developmental trends of the contemporary geophysics[J]. Progress in Geophysics,1991,6(4):1-5 [2] 滕吉文. 当今中国地球物理学发展的机遇、空间和挑战[J]. 物探化探计算技术,2007(增刊1):1-11,15Teng Jiwen. The opportunity,space and challenge for the development of geophysics in China of today[J]. Computing Techniques for Geophysical and Geochemical Exploration,2007(S1):1-11,15 [3] 滕吉文,杨顶辉,田小波,等. 青藏高原深部地球物理探测70年[J]. 中国科学:地球科学,2019,49(10):1546-1564 doi: 10.1360/SSTe-2019-0132Teng Jiwen,Yang Dinghui,Tian Xiaobo,et al. Geophysical investigation progresses of the Qinghai-Tibetan Plateau in the past 70 years[J]. Scientia Sinica Terrae,2019,49(10):1546-1564 doi: 10.1360/SSTe-2019-0132 [4] Guo X Y,Gao R,Keller R,et al. Imaging the crustal structure beneath the eastern Tibetan Plateau and implications for the uplift of the Longmen Shan range[J]. Earth Planet. Sci. Lett.,2013,379:72-80 doi: 10.1016/j.jpgl.2013.08.005 [5] Wang C S,Gao R,Yin A,et al. A mid-crustal strain-transfer model for continental deformation:A new perspective from high-resolution deep seismic-reflection profiling across NE Tibet[J]. Earth Planet. Sci. Lett.,2011,306(3-4):279-288 doi: 10.1016/j.jpgl.2011.04.010 [6] Zhang Z J,Wang Y H,Chen Y,et al. Crustal structure across Longmenshan fault belt from passive source seismic profiling[J]. Geophys. Res. Lett.,2009,36(17):L17310 doi: 10.1029/2009GL039580 [7] 吴腾飞. 青藏高原东南部地壳上地幔结构及动力学解释[D]. 武汉: 武汉大学, 2018Wu Tengfei. Structure of the crustal and upper-mantle in Southeastern Tibetan and its dynamic interpretation[D]. Wuhan: Wuhan University, 2018 [8] Dewey J F,Shackleton R M,Chang C F,et al. The tectonic development of the Tibetan Plateau[J]. Phil. Trans. R. Soc. Lond.,1988,327(1594):379-413 doi: 10.1098/rsta.1988.0135 [9] Zhang S H,Zhao Y,Ye H,et al. Origin and evolution of the Bainaimiao arc belt:Implications for crustal growth in the southern Central Asian orogenic belt[J]. Geological Society of America Bulletin,2014,126(9-10):1275-1300 doi: 10.1130/B31042.1 [10] Liu C M,Yao H J. Surface wave tomography with spatially varying smoothing based on continuous model regionalization[J]. Pure Appl. Geophys.,2017,174:937-953 doi: 10.1007/s00024-016-1434-5 [11] Fang H J,Yao H J,Zhang H J,et al. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing:Methodology and application[J]. Geophys. J. Int.,2015,201(3):1251-1263 doi: 10.1093/gji/ggv080 [12] Yao H J,Beghein C,van der Hilst R D. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—II. Crustal and upper-mantle structure[J]. Geophys. J. Int.,2008,173(1):205-219 doi: 10.1111/j.1365-246X.2007.03696.x [13] 张智奇,姚华建,杨妍. 青藏高原东南缘地壳上地幔三维S波速度结构及动力学意义[J]. 中国科学:地球科学,2020,63(9):1278-1293 doi: 10.1007/s11430-020-9625-3Zhang Zhiqi,Yao Huajian,Yang Yan. Shear wave velocity structure of the crust and upper mantle in Southeastern Tibet and its geodynamic implications[J]. Scientia Sinica Terrae,2020,63(9):1278-1293 doi: 10.1007/s11430-020-9625-3 [14] 黄周传,吉聪,吴寒婷,等. 青藏高原东南缘地壳结构与变形机制研究进展[J]. 地球与行星物理论评,2021,52(3):291-307Huang Zhouchuan,Ji Cong,Wu Hanting,et al. Review on the crustal structures and deformations in the southeastern margin of the Tibetan Plateau[J]. Reviews of Geophysics and Planetary Physics,2021,52(3):291-307 [15] Yang Y,Yao H J,Wu H X,et al. A new crustal shear-velocity model in Southwest China from joint seismological inversion and its implications for regional crustal dynamics[J]. Geophys. J. Int.,2020,220:1379-1393 [16] Royden L H,Burchfiel B C,King R W,et al. Surface deformation and lower crustal flow in Eastern Tibet[J]. Science,1997,276(5313):788-790 doi: 10.1126/science.276.5313.788 [17] Royden L H,Burchfiel B C,van der Hilst R D. The geological evolution of the Tibetan Plateau[J]. Science,2008,321(5892):1054-1058 doi: 10.1126/science.1155371 [18] Clark M K,Royden L H. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow[J]. Geology,2000,28(8):703-706 doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2 [19] Beaumont C,Jamieson R A,Nguyen M H,et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature,2001,414(6865):738-742 doi: 10.1038/414738a [20] Li J T,Song X D. Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet[J]. Proceedings of the National Academy of Sciences,2018,115(33):8296-8300 doi: 10.1073/pnas.1717258115 [21] Sun X X,Bao X W,Xu M J,et al. Crustal structure beneath SE Tibet from joint analysis of receiver functions and Rayleigh wave dispersion[J]. Geophys. Res. Lett.,2014,41(5):1479-1484 doi: 10.1002/2014GL059269 [22] Bao X W,Sun X X,Xu M J,et al. Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions[J]. Earth Planet. Sci. Lett.,2015,415:16-24 doi: 10.1016/j.jpgl.2015.01.020 [23] Deng Y F,Shen W S,Xu T,et al. Crustal layering in northeastern Tibet:A case study based on joint inversion of receiver functions and surface wave dispersion[J]. Geophys. J. Int.,2015,203(1):692-706 doi: 10.1093/gji/ggv321 [24] 李晨晶,白登海,薛帅,等. 鄂尔多斯地块深部岩石圈电性结构研究[J]. 地球物理学报,2017,60(5):1788-1799 doi: 10.6038/cjg20170515Li Chenjing,Bai denghai,Xue Shuai,et al. A magnetotelluric study of the deep electric structure beneath the Ordos Block[J]. Chinese Journal of Geophysics,2017,60(5):1788-1799 doi: 10.6038/cjg20170515 [25] Chen Y L,Niu F L. Joint inversion of receiver functions and surface waves with enhanced preconditioning on densely distributed CNDSN stations:Crustal and upper mantle structure beneath China[J]. Journal of Geophysical Research:Solid Earth,2016,121(2):743-766 doi: 10.1002/2015JB012450 [26] Li J T,Song X D,Zhu L P,et al. Joint inversion of surface wave dispersions and receiver functions with P velocity constraints:Application to Southeastern Tibet[J]. Journal of Geophysical Research:Solid Earth,2017,122(9):7291-7310 doi: 10.1002/2017JB014135 [27] Li Y H,Wang X C,Zhang R Q,et al. Crustal structure across the NE Tibetan Plateau and Ordos Block from the joint inversion of receiver functions and Rayleigh-wave dispersions[J]. Tectonophysics,2017,705:33-41 doi: 10.1016/j.tecto.2017.03.020 [28] 刘成林,陈浩朋,谢军. 面波频散与体波接收函数联合反演研究回顾及展望[J]. 地球物理学进展,2018,33(2):479-488 doi: 10.6038/pg2018BB0189Liu Chenglin,Chen Haopeng,Xie Jun. Progress in the studies of the joint inversion for surface wave dispersion and receiver functions[J]. Progress in Geophysics,2018,33(2):479-488 doi: 10.6038/pg2018BB0189 [29] Tong P,Chen C W,Komatitsch D,et al. High-resolution seismic array imaging based on an SEM-FK hybrid method[J]. Geophys. J. Int.,2014,197(1):369-395 doi: 10.1093/gji/ggt508 [30] Zhang C,Yao H J,Liu Q Y,et al. Linear array ambient noise adjoint tomography reveals intense crust-mantle interactions in North China Craton[J]. Journal of Geophysical Research:Solid Earth,2018,123(1):368-383 doi: 10.1002/2017JB015019 [31] 张超. 基于线性台阵背景噪声与体波波形伴随成像方法研究及应用[D]. 合肥: 中国科技大学, 2018Zhang Chao. Linear array ambient noise and body wave waveform adjoint tomography: Methodology and applications[D]. Hefei: University of Science and Technology of China, 2018 [32] 杨振涛,陈晓非,潘磊,等. 基于矢量波数变换法(VWTM)的多道Rayleigh波分析方法[J]. 地球物理学报,2019,62(1):298-305 doi: 10.6038/cjg2019M0641Yang Zhentao,Chen Xiaofei,Pan Lei,et al. Multi-channel analysis of Rayleigh waves based on the Vector Wavenumber Tansformation Method (VWTM)[J]. Chinese Journal of Geophysics,2019,62(1):298-305 doi: 10.6038/cjg2019M0641 [33] 侯增谦,杨竹森,徐文艺,等. 青藏高原碰撞造山带:I. 主碰撞造山成矿作用[J]. 矿床地质,2006,25(4):337-358 doi: 10.3969/j.issn.0258-7106.2006.04.001Hou Zengqian,Yang Zhusen,Xu Wenyi,et al. Metallogenesis in Tibetan collisional orogenic belt:I. Mineralization in main collisional orogenic setting[J]. Mineral Deposits,2006,25(4):337-358 doi: 10.3969/j.issn.0258-7106.2006.04.001 [34] 侯增谦,潘桂棠,王安建,等. 青藏高原碰撞造山带:Ⅱ. 晚碰撞转换成矿作用[J]. 矿床地质,2006,25(5):521-543Hou Zengqian,Pan Guitang,Wang Anjian,et al. Metallogenesis in Tibetan collisional orogenic belt:II. Mineralization in late-collisional transformation setting[J]. Mineral Deposits,2006,25(5):521-543 [35] 侯增谦,曲晓明,杨竹森,等. 青藏高原碰撞造山带:Ⅲ. 后碰撞伸展成矿作用[J]. 矿床地质,2006,25(6):629-651 doi: 10.3969/j.issn.0258-7106.2006.06.001Hou Zengqian,Qu Xiaoming,Yang Zhusen,et al. Metallogenesis in Tibetan collisional orogenic belt:III. Mineralization in post-collisional extension setting[J]. Mineral Deposits,2006,25(6):629-651 doi: 10.3969/j.issn.0258-7106.2006.06.001 [36] 侯增谦,赵志丹,高永丰,等. 印度大陆板片前缘撕裂与分段俯冲:来自冈底斯新生代火山-岩浆作用证据[J]. 岩石学报,2006,22(4):761-774 doi: 10.3321/j.issn:1000-0569.2006.04.001Hou Zengqian,Zhao Zhidan,Gao Yongfeng,et al. Tearing and dischronal subduction of the Indian continental slab:Evidence from Cenozoic Gangdese volcano-magmatic rocks in south Tibet[J]. Acta Petrologica Sinica,2006,22(4):761-774 doi: 10.3321/j.issn:1000-0569.2006.04.001 [37] Chen Y,Xu Y G,Xu T,et al. Magmatic underplating and crustal growth in the Emeishan Large Igneous Province,SW China,revealed by a passive seismic experiment[J]. Earth Planet. Sci. Lett.,2015,432:103-114 doi: 10.1016/j.jpgl.2015.09.048 [38] 高锐,马永生,李秋生,等. 松潘地块与西秦岭造山带下地壳的性质和关系−深地震反射剖面的揭露[J]. 地质通报,2006,25(12):1361-1367 doi: 10.3969/j.issn.1671-2552.2006.12.003Gao Rui,Ma Yongsheng,Li Qiusheng,et al. Structure of the lower crust beneath the Songpan block and West Qinling Orogen and their relation as revealed by deep seismic reflection profiling[J]. Geological Bulletin of China,2006,25(12):1361-1367 doi: 10.3969/j.issn.1671-2552.2006.12.003 [39] 高锐,王海燕,马永生,等. 松潘地块若尔盖盆地与西秦岭造山带岩石圈尺度的构造关系−深地震反射剖面探测成果[J]. 地球学报,2006,27(5):411-418 doi: 10.3321/j.issn:1006-3021.2006.05.004Gao Rui,Wang Haiyan,Ma Yongsheng,et al. Tectonic relationships between the Zoige Basin of the Song-Pan Block and the West Qinling Orogen at lithosphere scale:Results of deep seismic reflection profiling[J]. Acta Geoscientica Sinica,2006,27(5):411-418 doi: 10.3321/j.issn:1006-3021.2006.05.004 [40] Gao R,Lu Z W,Klemperer S L,et al. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J]. Nature Geoscience,2016,9(7):555-560 doi: 10.1038/ngeo2730 [41] Hirn A,Lepine J C,Jobert G,et al. Crustal structure and variability of Himalayan border of Tibet[J]. Nature,1984,307:23-25 doi: 10.1038/307023a0 [42] Guo L H,Gao R. Potential-field evidence for the tectonic boundaries of the central and western Jiangnan belt in South China[J]. Precambrian Research,2018,309:45-55 doi: 10.1016/j.precamres.2017.01.028 [43] Li Y Q,He D F,Chen L B,et al. Cretaceous sedimentary basins in Sichuan,SW China:Restoration of tectonic and depositional environments[J]. Cretaceous Research,2016,57:50-65 doi: 10.1016/j.cretres.2015.07.013 [44] Guo X Y,Gao R,Wang H Y,et al. Crustal architecture beneath the Tibet-Ordos transition zone,NE Tibet,and the implications for plateau expansion[J]. Geophys. Res. Lett.,2015,24(42):10631-10639 [45] Huang Z C,Tilmann F,Xu M J,et al. Insight into NE Tibetan Plateau expansion from crustal and upper mantle anisotropy revealed by shear-wave splitting[J]. Earth Planet. Sci. Lett.,2017,478:66-75 doi: 10.1016/j.jpgl.2017.08.030 [46] 熊小松,高锐,酆少英,等. 榆木山构造带深部结构及隆升成因[J]. 中国地质,2019,46(5):1039-1051 doi: 10.12029/gc20190506Xiong Xiaosong,Gao Rui,Feng Shaoying,et al. Deep structure of Yumushan tectonic zone and genesis of the uplift[J]. Geology in China,2019,46(5):1039-1051 doi: 10.12029/gc20190506 [47] 太龄雪,高原. 地壳介质剪切波分裂研究的部分进展[J]. 地震,2008,28(2):65-73 doi: 10.3969/j.issn.1000-3274.2008.02.007Tai Lingxue,Gao Yuan. Some progresses of shear-wave splitting in the crust[J]. Earthquake,2008,28(2):65-73 doi: 10.3969/j.issn.1000-3274.2008.02.007 [48] 张艺,高原,赵镇岭. 川滇地区壳幔地震各向异性研究进展[J]. 中国地震,2018,34(2):207-218Zhang Yi,Gao Yuan,Zhao Zhenling. Reviews on the seismic anisotropy in the crust and mantle of Sichuan-Yunnan area,China[J]. Earthquake Research in China,2018,34(2):207-218 [49] Ribe,Neil M. On the relation between seismic anisotropy and finite strain[J]. Journal of Geophysical Research:Solid Earth,1992,97(B6):8737-8747 doi: 10.1029/92JB00551 [50] Silver P G,Chan W W. Shear wave splitting and subcontinental mantle deformation[J]. Journal of Geophysical Research:Solid Earth,1991,96(B10):16429-16454 doi: 10.1029/91JB00899 [51] Anderson D L. Elastic wave propagation in layered anisotropic media[J]. Journal of Geophysical Research Atmospheres,1961,66(9):2953-2963 doi: 10.1029/JZ066i009p02953 [52] Hess H H. Seismic anisotropy of the uppermost mantle under oceans[J]. Nature,1964,203(4945):629-631 doi: 10.1038/203629a0 [53] Crampin S. Seismic wave propagation through a cracked solid:Polarization as a possible dilatancy diagnostic[J]. Geophys. J. Int.,1979,53(3):467-496 [54] Crampin S. A review of wave motion in anisotropic and cracked media[J]. Wave Motion,1981,3(4):343-391 doi: 10.1016/0165-2125(81)90026-3 [55] Crampin S,Evans R,Üçer B,et al. Observations of dilatancy-induced polarization anomalies and earthquake prediction[J]. Nature,1980,286(5776):874-877 doi: 10.1038/286874a0 [56] 张中杰. 地震各向异性研究进展[J]. 地球物理学进展,2002,17(2):281-293 doi: 10.3969/j.issn.1004-2903.2002.02.014Zhang Zhongjie. A review of the seismic anisotropy and its applications[J]. Progress in Geophysics,2002,17(2):281-293 doi: 10.3969/j.issn.1004-2903.2002.02.014 [57] 高原,滕吉文. 中国大陆地壳与上地幔地震各向异性研究[J]. 地球物理学进展,2005,20(1):180-185 doi: 10.3969/j.issn.1004-2903.2005.01.032Gao Yuan,Teng Jiwen. Studies on seismic anisotropy in the crust and mantle on Chinese mainland[J]. Progress in Geophysics,2005,20(1):180-185 doi: 10.3969/j.issn.1004-2903.2005.01.032 [58] 黄臣宇,常利军. 基于横波分裂的青藏高原多圈层各向异性研究进展[J]. 地球与行星物理论评,2021,52(2):164-181Huang Chenyu,Chang Lijun. Reviews on seismic anisotropy based on shear-wave splitting in the Tibetan Plateau[J]. Reviews of Geophysics and Planetary Physics,2021,52(2):164-181 [59] Vinnik L P,Farra V,Romanowicz B. Azimuthal anisotropy in the earth from observations of SKS at GEOSCOPE and NARS broadband stations[J]. Bull. Seismol. Soc. Amer.,1989,79(5):1542-1558 [60] Vinnik L P,Kind R,Makeyeva L I,et al. Azimuthal anisotropy in the lithosphere from observations of long-period S-waves[J]. Geophys. J. Int.,1989,99(3):549-559 doi: 10.1111/j.1365-246X.1989.tb02039.x [61] Meade C,Silver P G,Kaneshima S. Laboratory and seismological observations of lower mantle isotropy[J]. Geophys. Res. Lett.,1995,22(10):1293-1296 doi: 10.1029/95GL01091 [62] Silver P G. Seismic anisotropy beneath the continents:Probing the depths of geology[J]. Annu. Rev. Earth Planet. Sci.,1996,24(3):385-432 [63] Pulliam J,Sen M K. Seismic anisotropy in the core-mantle transition zone[J]. Geophys. J. Int.,1998,135(1):113-128 doi: 10.1046/j.1365-246X.1998.00612.x [64] Chen Y,Li W,Yuan X H,et al. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements[J]. Earth Planet. Sci. Lett.,2015,413:13-24 doi: 10.1016/j.jpgl.2014.12.041 [65] Forsyth D. A new method for the analysis of multi-mode surface-wave dispersion:Application to Love-wave propagation in the east Pacific[J]. Bull. Seismol. Soc. Amer.,1975,65(2):323-342 doi: 10.1785/BSSA0650020323 [66] Tanimoto T,Anderson D L. Lateral heterogeneity and azimuthal anisotropy of the upper mantle:Love and Rayleigh waves 100—250 s[J]. Journal of Geophysical Research:Solid Earth,1985,90(B2):1842-1858 doi: 10.1029/JB090iB02p01842 [67] Song P P,Ding L,Lippert P C,et al. Paleomagnetism of Middle Triassic Lavas from Northern Qiangtang (Tibet):Constraints on the closure of the Paleo-Tethys Ocean[J]. Journal of Geophysical Research:Solid Earth,2020,125(2):e2019JB017804 [68] Yao H J,van der Hilst R D,Montagner J P. Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography[J]. Journal of Geophysical Research:Solid Earth,2010,115(B12):B12307 doi: 10.1029/2009JB007142 [69] 黄书野. 青藏高原高分辨率三维横波速度结构及其构造意义[D]. 合肥: 中国科学技术大学, 2020Huang Shuye. High-resolution 3-D shear-wave velocity model of the Tibetan Plateau and its tectonic implication[D]. Hefei: University of Science and Technology of China, 2020 [70] 王旭,陈凌,凌媛,等. 基于接收函数直达P波振幅研究地壳浅层S波速度结构新方法及在青藏高原东北缘的应用[J]. 中国科学:地球科学,2019,62:1819-1831Wang Xu,Chen Ling,Ling Yuan,et al. A new method to constrain shallow crustal S-wave velocities based on direct P-wave amplitudes in receiver functions and its application in northeastern Tibet[J]. Scientia Sinica Terrae,2019,62:1819-1831 [71] 杨元, 姚华建. 用双台法研究青藏高原东北部瑞利面波相速度分布和方位各向异性[C]. 2014年中国地球科学联合学术年会, 2014: 2003Yang Yuan, Yao Huajian. Studies on Rayleigh wave phase velocities and azimuthal anisotropy using determine method of dual stations[C]. 2014 Annual Meeting of Chinese Geoscience Union (CGU), 2014: 2003 [72] 陈晓非. 强地面运动模拟与震灾预测研究进展[C]. 中国地球物理第二十一届年会论文集, 2005: 62-63Chen Xiaofei. Advances in strong ground motion simulation and earthquake disaster prediction[C]. A collection of papers from the 21st annual meeting of geophysics in China, 2005: 62-63 [73] 赵宏阳,陈晓非. 1975年海城MS7.3地震强地面运动模拟[J]. 地球物理学报,2017,60(7):2707-2715 doi: 10.6038/cjg20170717Zhao Hongyang,Chen Xiaofei. Simulation of strong ground motion by the 1975 Haicheng MS7.3 earthquake[J]. Chinese Journal of Geophysics,2017,60(7):2707-2715 doi: 10.6038/cjg20170717 [74] 朱强,姜芦倩,张伟. 介质离散方法对地震波场有限差分数值模拟准确性的影响[J]. 石油物探,2018,57(2):198-207 doi: 10.3969/j.issn.1000-1441.2018.02.004Zhu Qiang,Jiang Luqian,Zhang Wei. Effects of media discretization method on finite difference simulation for seismic wave field[J]. Geophysical Prospecting for Petroleum,2018,57(2):198-207 doi: 10.3969/j.issn.1000-1441.2018.02.004 [75] 张伟. 含起伏地形的三维非均匀介质中地震波传播的有限差分算法及其在强地面震动模拟中的应用[D]. 北京: 北京大学, 2006Zhang Wei. Finite difference seismic wave modelling in 3D heterogeneous media with surface topography and its implementation in strong ground motion study[D]. Beijing: Peking University, 2006 [76] Zhang W,Chen X F. Traction image method for irregular free surface boundaries in finite difference seismic wave simulation[J]. Geophys. J. Inter.,2006,167(1):337-353 doi: 10.1111/j.1365-246X.2006.03113.x [77] Zhang W,Shen Y. Unsplit complex frequency-shifted PML implementation using auxiliary differential equations for seismic wave modeling[J]. Geophysics,2010,75(4):T141-T154 doi: 10.1190/1.3463431 [78] Wang N,Li J,Borisov D,et al. Modeling three-dimensional wave propagation in Anelastic models with surface topography by the optimal strong stability preserving Runge-Kutta method[J]. Journal of Geophysical Research:Solid Earth,2018,124(1):890-907 [79] 朱耿尚,张振国,张伟,等. 2013年6月2日台湾南投地震强地面运动模拟[J]. 地球物理学报,2016,59(8):2871-2877 doi: 10.6038/cjg20160813Zhu Gengshang,Zhang Zhenguo,Zhang Wei,et al. Simulation of strong ground motion for the Nantou,Taiwan earthquake of 2 June 2013[J]. Chinese Journal of Geophysics,2016,59(8):2871-2877 doi: 10.6038/cjg20160813 [80] 李雪燕,陈晓非,杨振涛,等. 城市微动高阶面波在浅层勘探中的应用:以苏州河地区为例[J]. 地球物理学报,2020,63(1):247-255 doi: 10.6038/cjg2020N0202Li Xueyan,Chen Xiaofei,Yang Zhentao,et al. Application of high-order surface waves in shallow exploration:An example of the Suzhou river,Shanghai[J]. Chinese Journal of Geophysics,2020,63(1):247-255 doi: 10.6038/cjg2020N0202 [81] Hawkesworth C,Cawood P,Dhuime B. Continental growth and the crustal record[J]. Tectonophysics,2013,609:651-660 doi: 10.1016/j.tecto.2013.08.013 [82] 陈赟,丁巍伟,郑勇,等. 燕山期重大地质事件关键廊带的地球物理探测[J]. 矿物岩石地球化学通报,2017,36(4):560-566 doi: 10.3969/j.issn.1007-2802.2017.04.006Chen Yun,Ding Weiwei,Zheng Yong,et al. Comprehensive geophysical investigation in the key corridor related to the major Yanshanian events[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2017,36(4):560-566 doi: 10.3969/j.issn.1007-2802.2017.04.006 [83] Stern R J. Subduction zones[J]. Reviews of Geophysics,2002,40(4):1-38 [84] Bebout G E. Metamorphic chemical geodynamics of subduction zones[J]. Earth Planet. Sci. Lett.,2007,260(3-4):373-393 doi: 10.1016/j.jpgl.2007.05.050 [85] Zhang L,Chen R X. Partial melting of deeply subducted continental crust during exhumation:Insights from felsic veins and host UHP metamorphic rocks in North Qaidam,Northern Tibet[J]. Journal of Metamorphic Geology,2015,33(7):671-694 doi: 10.1111/jmg.12146 [86] 徐义刚. 地幔柱构造、大火成岩省及其地质效应[J]. 地学前缘,2002,9(4):341-353 doi: 10.3321/j.issn:1005-2321.2002.04.014Xu Yigang. Mantle plumes,large igneous provinces and their geologic consequences[J]. Earth Science Frontiers,2002,9(4):341-353 doi: 10.3321/j.issn:1005-2321.2002.04.014 [87] Morgan W J. Convection plumes in the lower mantle[J]. Nature,1971,230(5288):42-43 doi: 10.1038/230042a0 [88] Anderson D. Look again[J]. Astronomy & Geophysics,2003,44(1):10-11 [89] 蓝江波,徐义刚,杨启军,等. 滇西高黎贡带~40 Ma OIB型基性岩浆活动:消减特提斯洋片与印度板块断离的产物?[J]. 岩石学报,2007,23(6):1334-1346 doi: 10.3969/j.issn.1000-0569.2007.06.010Lan Jiangbo,Xu Yigang,Yang Qijun,et al. ~40 Ma OIB-type mafic magmatism in the Gaoligong belt:Result of break-off between subducting Tethyan slab and Indial plate?[J]. Acta Petrologica Sinica,2007,23(6):1334-1346 doi: 10.3969/j.issn.1000-0569.2007.06.010 [90] Wilson J T. A possible origin of the Hawaiian Islands[J]. Canadian Journal of Earth Science,1963,41(6):863-870 [91] Campbell I H,Griffiths R W. Implications of mantle plume structure for the evolution of flood basalts[J]. Earth Planet. Sci. Lett.,1990,99(1-2):79-93 doi: 10.1016/0012-821X(90)90072-6 [92] Zhao D P. Seismic structure and origin of hotspots and mantle plumes[J]. Earth planet. Sci. Lett.,2001,192(3):251-265 doi: 10.1016/S0012-821X(01)00465-4 [93] Montelli R,Nolet G,Dahlen F A,et al. Finite-frequency tomography reveals a variety of plumes in the mantle[J]. Science,2004,303(5656):338-343 doi: 10.1126/science.1092485 [94] Campbell I H. Large igneous provinces and the mantle plume hypothesis[J]. Elements,2005,1(5):265-269 doi: 10.2113/gselements.1.5.265 [95] 徐义刚,王焰,位荀,等. 与地幔柱有关的成矿作用及其主控因素[J]. 岩石学报,2013,29(10):3307-3322Xu Yigang,Wang Yan,Wei Xun,et al. Mantle plume-related mineralization and their principal controlling factors[J]. Acta Petrologica Sinica,2013,29(10):3307-3322 [96] 陈赟,王振华,郭希,等. 古地幔柱作用“遗迹”的深部地球物理探测−以峨眉山大火成岩省为例[J]. 矿物岩石地球化学通报,2017,36(3):394-403 doi: 10.3969/j.issn.1007-2802.2017.03.003Chen Yun,Wang Zhenhua,Guo Xi,et al. Geophysical signature of the ancient mantle plume activities:A case study of the Emeishan large igneous province[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2017,36(3):394-403 doi: 10.3969/j.issn.1007-2802.2017.03.003 [97] Bryan S E,Ferrari L. Large igneous provinces and silicic large igneous provinces:Progress in our understanding over the last 25 years[J]. Geological Society of America Bulletin,2013,125(7-8):1053-1078 doi: 10.1130/B30820.1 [98] 杨启军,徐义刚. 滇西怒江—高黎贡构造带内花岗岩的侵位过程及其对特提斯演化过程的响应[J]. 吉林大学学报(地球科学版),2011,41(5):1353-1361Yang Qijun,Xu Yigang. The emplacement of granites in Nujiang—Gaoligong belt,western Yunnan,and response to the evolvement of Neo-Tethys[J]. Journal of Jilin University (Earth Science Edition),2011,41(5):1353-1361 [99] 马鹏飞,夏小平,徐健,等. 腾冲早白垩世花岗岩的高分异成因及其构造意义[J]. 岩石学报,2021,37(4):1177-1195 doi: 10.18654/1000-0569/2021.04.13Ma Pengfei,Xia Xiaoping,Xu Jian,et al. Early-Cretaceous highly fractionated granites from the Tengchong terrane:Petrogenesis and tectonic implication[J]. Acta Petrologica Sinica,2021,37(4):1177-1195 doi: 10.18654/1000-0569/2021.04.13 [100] 杨启军,徐义刚,黄小龙,等. 滇西腾冲—梁河地区花岗岩的年代学、地球化学及其构造意义[J]. 岩石学报,2009,25(5):1092-1104Yang Qijun,Xu Yigang,Huang Xiaolong,et al. Geochronology and geochemistry of granites in the Tengliang area,western Yunnan:Tectonic implication[J]. Acta Petrologica Sinica,2009,25(5):1092-1104 [101] 徐义刚,何斌,罗震宇,等. 我国大火成岩省和地幔柱研究进展与展望[J]. 矿物岩石地球化学通报,2013,32(1):25-39 doi: 10.3969/j.issn.1007-2802.2013.01.002Xu Yigang,He Bin,Luo Zhenyu,et al. Study on mantle plume and large igneous provinces in China:An overview and perspectives[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2013,32(1):25-39 doi: 10.3969/j.issn.1007-2802.2013.01.002 [102] 陆超,李晓斌,张亚斌,等. 峨眉山花岗岩年代学及构造环境意义[J]. 矿物岩石,2021,41(1):53-66Lu Chao,Li Xiaobin,Zhang Yabin,et al. Chronology and tectonic environmental significance of Emeishan granite[J]. Mineralogy and Petrology,2021,41(1):53-66 [103] Torsvik T H,van der Voo R,Doubrovine P V,et al. Deep mantle structure as a reference frame for movements in and on the Earth[J]. Proceeding of the National Academy of Sciences of the United States of America,2014,111(24):8735-8740 doi: 10.1073/pnas.1318135111 [104] 徐义刚. 《华北克拉通破坏》:多学科融通、十年磨一剑[J]. 科学通报,2020,65(34):3860-3861 doi: 10.1360/TB-2020-1144Xu Yigang. Destruction of the North China Craton:Multidisciplinary efforts over past ten years[J]. Chinese Science Bulletin,2020,65(34):3860-3861 doi: 10.1360/TB-2020-1144 [105] 徐义刚,何斌,黄小龙,等. 地幔柱大辩论及如何验证地幔柱假说[J]. 地学前缘,2007,14(2):1-9Xu Yigang,He Bin,Huang Xiaolong,et al. The debate over mantle plumes and how to test the plume hypothesis[J]. Earth Science Frontiers,2007,14(2):1-9 [106] Xu Y G,He B,Huang X L,et al. Identification of mantle plumes in the Emeishan Large Igneous Province[J]. Episodes,2007,30(1):32-42 doi: 10.18814/epiiugs/2007/v30i1/005 [107] Xu Y G,He B. Thick,high-velocity crust in the Emeishan large igneous province,SW China:Evidence for crustal growth by magmatic underplating or intraplating[J]. Special Paper of the Geological Society of America,2007,430:841-858 [108] 田雨露,李亚,孟凡超,等. 峨眉山大火成岩省岩石成因与空间差异性研究−基于全区高Ti玄武岩地球化学数据分析与模拟[J]. 岩石矿物学杂志,2021,40(4):687-703 doi: 10.3969/j.issn.1000-6524.2021.04.002Tian Yulu,Li Ya,Meng Fanchao,et al. A study of the petrogenesis and spatial difference of the Emeishan Large Igneous Province:Based on geochemical analysis and simulation of the high Ti basalts in the whole region[J]. Acta Petrologica Et Mineralogica,2021,40(4):687-703 doi: 10.3969/j.issn.1000-6524.2021.04.002 [109] 戢兴忠,陈强,程志国,等. 峨眉山大火成岩省东区普安玄武岩系年代学、地球化学及成因研究[J]. 岩石矿物学杂志,2021,40(2):363-382 doi: 10.3969/j.issn.1000-6524.2021.02.013Ji Xingzhong,Chen Qiang,Cheng Zhiguo,et al. Geochronology,geochemistry and petrogenesis of the Pu’an basalt succession from eastern Emeishan Large Igneous Province[J]. Acta Petrologica Et Mineralogica,2021,40(2):363-382 doi: 10.3969/j.issn.1000-6524.2021.02.013 [110] 杜航,王俊,钱婷,等. 地幔柱研究进展[J]. 地震科学进展,2021,51(6):241-245,251 doi: 10.3969/j.issn.2096-7780.2021.06.001Du Hang,Wang Jun,Qian Ting,et al. Research progress of mantle plume[J]. Progress in Earthquake Sciences,2021,51(6):241-245,251 doi: 10.3969/j.issn.2096-7780.2021.06.001 [111] Li W,Chen Y,Liang X F,et al. Lateral seismic anisotropy variations record interaction between Tibetan mantle flow and plume-strengthened Yangtze craton[J]. Journal of Geophysical Research:Solid Earth,2021,126(4):e2020JB020841 [112] 许志琴,郑碧海,王勤. 从洋-陆俯冲到陆-陆碰撞:回眸与展望[J]. 地质学报,2021,95(1):75-97Xu Zhiqin,Zheng Bihai,Wang Qin. From accretion to collision:Situation and outlook[J]. Acta Geologic Sinica,2021,95(1):75-97 [113] Jamieson R A,Beaumont C. On the origin of orogens[J]. Geological Society of America Bulletin,2013,125(11-12):1671-1702 doi: 10.1130/B30855.1 [114] Beaumont C,Jamieson R A,Nguyen M H,et al. Crustal channel flows:1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen[J]. J. Geophys. Res.,2004,109:B06406 [115] Godin L,Grujic D,Law R D,et al. Channel flow,ductile extrusion and exhumation in continental collision zones:An introduction[J]. Geological Society London Special Publications,2006,268:1-23 doi: 10.1144/GSL.SP.2006.268.01.01 [116] Grujic D,Casey M,Davidson C,et al. Ductile extrusion of the Higher Himalayan Crystalline in Bhutan:Evidence from quartz microfabrics[J]. Tectonophysics,1996,260(1):21-43 [117] Wu C D,Nelson K D,Wortman G,et al. Yadong cross structure and South Tibetan detachment in the east central Himalaya (89°—90°E)[J]. Tectonics,1998,17(1):28-45 doi: 10.1029/97TC03386 [118] Xu Z Q,Wang Q,Tang Z M,et al. Fabric kinematics of the ultrahigh-pressure metamorphic rocks from the main borehole of the Chinese Continental Scientific Drilling Project:Implications for continental subduction and exhumation[J]. Tectonophysics,2009,475(2):235-250 doi: 10.1016/j.tecto.2009.02.041 [119] 许志琴,王勤,曾令森,等. 高喜马拉雅的三维挤出模式[J]. 中国地质,2013,40(3):671-680 doi: 10.3969/j.issn.1000-3657.2013.03.002Xu Zhiqin,Wang Qin,Zeng Lingsen,et al. Three-dimensional extrusion model of the great Himalaya slice[J]. Geology in China,2013,40(3):671-680 doi: 10.3969/j.issn.1000-3657.2013.03.002 [120] 顾筱彤,王勤. 大别山超高压变质岩的显微构造与有效黏度[J]. 高校地质学报,2020,26(6):601-616Gu Xiaotong,Wang Qin. Microstructure and effective viscosity of ultrahigh-pressure metamorphic rocks from the Dabie Mountains[J]. Geological Journal of China Universities,2020,26(6):601-616 [121] 侯增谦, 许博, 郑远川, 等. 地幔通道流: 青藏高原大规模生长的深部机制[J]. 科学通报, 2021, 66(21): 2671-2690Hou Zengqian, Xu Bo, Zheng Yuanchuan, et al. Mantle flow: The deep mechanism of large-scale growth in Tibetan Plateau[J], Chinese Science Bulletin, 2021, 66(21): 2671-2690 [122] Tapponnier P,Xu Z Q,Roger F,et al. Oblique stepwise rise and growth of the Tibet plateau[J]. Science,2001,294(5547):1671-1677 doi: 10.1126/science.105978 [123] 许志琴,王勤,李忠海,等. 印度-亚洲碰撞:从挤压到走滑的构造转换[J]. 地质学报,2016,90(1):1-23 doi: 10.3969/j.issn.0001-5717.2016.01.001Xu Zhiqin,Wang Qin,Li Zhonghai,et al. Indo-Asian collision:Tectonic transition from compression to strike slip[J]. Acta Geologica Sinica,2016,90(1):1-23 doi: 10.3969/j.issn.0001-5717.2016.01.001 [124] 王立全,王保弟,李光明,等. 东特提斯地质调查研究进展综述[J]. 沉积与特提斯地质,2021,41(2):283-296Wang Liquan,Wang Baodi,Li Guangming,et al. Major progresses of geological survey and research in East Tethys:An overview[J]. Sedimentary Geology and Tethyan Geology,2021,41(2):283-296 [125] 丁林,Maksatbek S,蔡福龙,等. 印度与欧亚大陆初始碰撞时限、封闭方式和过程[J]. 中国科学:地球科学,2017,47(3):293-309Ding Lin,Maksatbek S,Cai Fulong,et al. Processes of initial collision and suturing between India and Asia[J]. Scientia Sinica Terrae,2017,47(3):293-309 [126] Hu X M,Garzanti E,Wang J G,et al. The timing of India-Asia collision onset:Facts,theories,controversies[J]. Earth-Science Reviews,2016,160:264-299 doi: 10.1016/j.earscirev.2016.07.014 [127] 胡培远,翟庆国,赵国春,等. 青藏高原纳木错西缘新元古代中期岩浆事件:对北拉萨地块起源的约束[J]. 岩石学报,2019,35(10):3115-3129 doi: 10.18654/1000-0569/2019.10.10Hu Peiyuan,Zhai Qingguo,Zhao Guochun,et al. Middle Neoproterozoic magmatic event in the western Nam Tso area,Tibetan Plateau:Constraint on the origin of the North Lhasa terrane[J]. Acta Petrologica Sinica,2019,35(10):3115-3129 doi: 10.18654/1000-0569/2019.10.10 [128] 胡培远,李才,吴彦旺,等. 青藏高原古特提斯洋早石炭世弧后拉张:来自A型花岗岩的证据[J]. 岩石学报,2016,32(4):1219-1231Hu Peiyuan,Li Cai,Wu Yanwang,et al. A back-arc extensional environment of the Early Carboniferous Paleo-Tethys Ocean in Tibetan Plateau:Evidences from A-type granites[J]. Acta Petrologica Sinica,2016,32(4):1219-1231 [129] Xu B,Hou Z Q,Griffin W L,et al. Cenozoic lithospheric architecture and metallogenesis in Southeastern Tibet[J]. Earth-Science Reviews,2021,214:103472 doi: 10.1016/j.earscirev.2020.103472 [130] Guo Z F,Hertogen J,Liu J Q,et al. Potassic magmatism in western Sichuan and Yunnan Provinces,SE Tibet,China:Petrological and geochemical constraints on petrogenesis[J]. J. Petrol.,2005,46(1):33-78 doi: 10.1093/petrology/egh061 [131] Wang Q,Wyman D A,Li Z X,et al. Eocene north-south trending dikes in central Tibet:New constraints on the timing of east-west extension with implications for early plateau uplift?[J]. Earth Planet. Sci. Lett.,2010,298(1-2):205-216 doi: 10.1016/j.jpgl.2010.07.046 [132] Yin A,Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences,2000,28:211-280 doi: 10.1146/annurev.earth.28.1.211 [133] Aitchison J C,Ali J R,Davis A M. 印度板块和亚洲大陆在何时何地碰撞[J]. 地质通报,2008,27(9):1351-1370 doi: 10.3969/j.issn.1671-2552.2008.09.001Aitchison J C,Ali J R,Davis A M. When and where did India and Asia collide?[J]. Geological Bulletin of China,2008,27(9):1351-1370 doi: 10.3969/j.issn.1671-2552.2008.09.001 [134] Wang C S,Dai J G,Zhao X X,et al. Outward-growth of the Tibetan Plateau during the Cenozoic:A review[J]. Tectonophysics,2014,621:1-43 doi: 10.1016/j.tecto.2014.01.036 [135] Su T,Farnsworth A,Spicer R A,et al. No high Tibetan Plateau until the Neogene[J]. Science Advances,2019,5(3):eaav2189 doi: 10.1126/sciadv.aav2189 [136] Orme D A,Laskowski A K,Zilinsky M F,et al. Sedimentology and provenance of newly identified Upper Cretaceous trench basin strata,Dênggar,southern Tibet:Implications for development of the Eurasian margin prior to India−Asia collision[J]. Basin Research,2021,33(2):1454-1473 doi: 10.1111/bre.12521 [137] 张进江,丁林. 青藏高原东西向伸展及其地质意义[J]. 地质科学,2003,38(2):179-189 doi: 10.3321/j.issn:0563-5020.2003.02.005Zhang Jinjiang,Ding Lin. East-west extension in Tibetan Plateau and its significance to tectonic evolution[J]. Chinese Journal of Geology,2003,38(2):179-189 doi: 10.3321/j.issn:0563-5020.2003.02.005 [138] 杨翼,宋晓东. 重复地震和地球内核的时变性[J]. 地球与行星物理论评,2021,52(1):1-10Yang Yi,Song Xiaodong. Repeating earthquakes and temporal changes of the Earth’s inner core[J]. Reviews of Geophysics and Planetary Physics,2021,52(1):1-10 [139] Coleman M,Hodges K. Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum age for east-west extension[J]. Nature,1995,374(6517):49-52 doi: 10.1038/374049a0 [140] Harrison T M,Copeland P,Kidd W S,et al. Raising Tibet[J]. Science,1992,255(5052):1663-1670 doi: 10.1126/science.255.5052.1663 [141] 徐仁. 青藏古植被的演变与青藏高原的隆起[J]. 中国科学院大学学报,1982,20(4):385-391Xu Ren. The uplift of the Qinghai-Xizang (Tibet) Plateau in relation to the vegetational changes in the past[J]. Journal of University of Chinese Academy of Sciences,1982,20(4):385-391 [142] 李吉均,方小敏,潘保田,等. 新生代晚期青藏高原强烈隆起及其对周边环境的影响[J]. 第四纪研究,2001,21(5):381-391 doi: 10.3321/j.issn:1001-7410.2001.05.001Li Jijun,Fang Xiaomin,Pan Baotian,et al. Late Cenozoic intensive uplift of Qinghai-Xizang Plateau and its impacts on environments in surrounding area[J]. Quaternary Sciences,2001,21(5):381-391 doi: 10.3321/j.issn:1001-7410.2001.05.001 [143] 李吉均,文世宣,张青松,等. 青藏高原隆起的时代、幅度和形式的探讨[J]. 中国科学,1979,9(6):608-616Li Jijun,Wen Shixuan,Zhang Qingsong,et al. Discussion on the age,amplitude and form of the uplift of the Tibetan Plateau[J]. Scientia Sinica,1979,9(6):608-616 [144] 潘保田,高红山,李炳元,等. 青藏高原层状地貌与高原隆升[J]. 第四纪研究,2004,24(1):50-57,133 doi: 10.3321/j.issn:1001-7410.2004.01.006Pan Baotian,Gao Hongshan,Li Bingyuan,et al. Step-like landforms and uplift of the Qinghai-Xizang plateau[J]. Quaternary Sciences,2004,24(1):50-57,133 doi: 10.3321/j.issn:1001-7410.2004.01.006 [145] 潘保田,高红山,李吉均. 关于夷平面的科学问题−兼论青藏高原夷平面[J]. 地理科学,2002,22(5):520-526 doi: 10.3969/j.issn.1000-0690.2002.05.002Pan Baotian,Gao Hongshan,Li Jijun. On problems of planation surface:A discussion on the planation surface in Qinghai-Xizang Plateau[J]. Scientia Geographica Sinica,2002,22(5):520-526 doi: 10.3969/j.issn.1000-0690.2002.05.002 [146] 张培震,张会平,郑文俊,等. 东亚大陆新生代构造演化[J]. 地震地质,2014,36(3):574-585 doi: 10.3969/j.issn.0253-4967.2014.03.003Zhang Peizhen,Zhang Huiping,Zheng Wenjun,et al. Cenozoic tectonic evolution of continental eastern Asia[J]. Seismology and Geology,2014,36(3):574-585 doi: 10.3969/j.issn.0253-4967.2014.03.003 [147] Chen F H,Ding L,Piao S L,et al. The Tibetan Plateau as the engine for Asian environmental change:The Tibetan Plateau Earth system research into a new era[J]. Chinese Science Bulletin,2021,66(13):1263-1266 [148] Ding L,Fu S H,Liu B Y,et al. Effects of Pinus tabulaeformis litter cover on the sediment transport capacity of overland flow[J]. Soil and Tillage Research,2020,204(12):104685 [149] Liu D L,Shi R D,Ding L,et al. Survived seamount reveals an in situ origin for the Central Qiangtang Metamorphic Belt in the Tibetan Plateau[J]. Journal of Earth Science,2019,30(6):1253-1265 doi: 10.1007/s12583-019-1250-9 [150] 鹿化煜,常宏,郭正堂,等. 大陆碰撞、高原生长和气候演化−2014年Crafoord奖获得者Peter Molnar教授成就解读[J]. 中国科学:地球科学,2015,45(6):770-779 doi: 10.1360/zd-2015-45-6-770Lu Huayu,Chang Hong,Guo Zhengtang,et al. Continental collision,Qinghai-Tibetan Plateau growth and climate evolution:An introduction to Professor Peter Molnar’s scientific contribution[J]. Scientia Sinica Terrae,2015,45(6):770-779 doi: 10.1360/zd-2015-45-6-770 [151] Boos W R,Kuang Z M. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating[J]. Nature,2010,463(7278):218-222 doi: 10.1038/nature08707 [152] 刘彩彩,王伟涛,张培震,等. 祁连盆地第三纪沉积物磁性地层和岩石磁组构初步研究[J]. 地球物理学报,2016,59(8):2965-2978 doi: 10.6038/cjg20160820Liu Caicai,Wang Weitao,Zhang Peizhen,et al. Magnetostratigraphy and magnetic anisotropy of the Neogene sediments in the Qilian Basin[J]. Chinese J. Geophys.,2016,59(8):2965-2978 doi: 10.6038/cjg20160820 [153] Kinby E,Reiners P W,Krol M A,et al. Late Cenozoic evolution of the eastern margin of the Tibetan Plateau:Inferences from 40Ar/39Ar and (U-Th)/He thermochronology[J]. Tectonics,2002,21(1):1-20 [154] Kirby E,Whipple K X,Burchfiel B C,et al. Neotectonics of the Min Shan,China:Implications for mechanisms driving Quaternary deformation along the eastern margin of the Tibetan Plateau[J]. Geological Society of America Bulletin,2000,112(3):375-393 doi: 10.1130/0016-7606(2000)112<375:NOTMSC>2.0.CO;2 [155] 张会平,杨农,刘少峰,等. 数字高程模型(DEM)在构造地貌研究中的应用新进展[J]. 地质通报,2006,25(6):660-669 doi: 10.3969/j.issn.1671-2552.2006.06.002Zhang Huiping,Yang Nong,Liu Shaofeng,et al. Recent progress in the DEM-based tectonogeomorphic study[J]. Geological Bulletin of China,2006,25(6):660-669 doi: 10.3969/j.issn.1671-2552.2006.06.002 [156] 张会平,杨农,张岳桥,等. 基于DEM的岷山构造带构造地貌初步研究[J]. 国家资源遥感,2004(4):54-58Zhang Huiping,Yang Nong,Zhang Yueqiao,et al. A GIS-based research on morpho structural features of the Minshan tectonic belt[J]. Remote Sensing for Land & Resources,2004(4):54-58 [157] 张会平,杨农,张岳桥,等. 岷江水系流域地貌特征及其构造指示意义[J]. 第四纪研究,2006,26(1):126-135 doi: 10.3321/j.issn:1001-7410.2006.01.016Zhang Huiping,Yang Nong,Zhang Yueqiao,et al. Geomorphology of the Minjiang drainage system (Sichuan,China) and its structural implications[J]. Quaternary Sciences,2006,26(1):126-135 doi: 10.3321/j.issn:1001-7410.2006.01.016 -

表(1)
计量
- 文章访问数: 146
- HTML全文浏览量: 79
- PDF下载量: 31