Study on the mechanism of dynamic stress and fault displacement in deep formations induced by seismic waves
-
摘要: 借鉴弹性波动力学理论和爆破地震应力计算方法,结合地震波在岩层中的折射效应,以地震波加速度为基础数据,分析岩体在地震波作用下的受力。以汶川地震影响下的龙门山前陆盆地地下岩层的受力变形情况为例,通过计算分析和数值模拟,证实所用方法在求解分析地震波在各向同性岩石层间传播动力的可行性。同时验证汶川地震造成龙门山前陆盆地地下深部地层的断层破坏。Abstract: With reference to elastic wave dynamics theory and blasting seismic stress calculation method, combined with the refraction effect of seismic waves in the rock layer, the seismic wave acceleration is used as the basic data to analyze the force of the rock mass under the action of seismic waves. Taking the stress and deformation of the underground strata in Longmenshan foreland basin under the influence of Wenchuan earthquake as an example, the feasibility of the method in solving and analyzing the dynamic propagation of seismic waves in isotropic rocks is verified through calculation analysis and numerical simulation. At the same time, it was verified that the Wenchuan earthquake caused fault damage to the deep underground strata in the Longmenshan foreland basin.
-
图 11 X-Z面监测的剪切应变变化
(a) 初始;(b) 500 step后;(c) 1000 step后;(d) 1500 step后;(e) 2000 step后;(f) 2500 step后;(g) 400000 step之后,即结束时
Figure 11. Shear strain change monitored by X-Z plane
(a) initial;(b) after 500 steps;(c) after 1000 steps;(d) after 1500 steps;(e) after 2000 steps; (f) after 2500 steps;(g) after 400000 steps, at the end
表 1 各地层的物理力学参数与围岩应力
Table 1. Physical mechanical parameters and surrounding rock stress of each layer
地层
序号厚度/m 密度/g·cm−3 剪切
模量G/GPa体积
模量K/GPa弹性
模量E/GPa内摩擦
角/°内聚力
C/GPa围岩
压力/MPa1 541.00 2.37 17.35 26.44 41.28 34.00 17.00 1.281 2 2441.00 2.60 18.26 28.91 44.90 38.48 15.49 7.628 3 870.00 2.65 21.63 32.02 52.09 39.75 14.32 9.933 4 1328.00 2.61 19.06 26.42 46.36 38.33 20.86 13.399 5 1735.00 2.61 15.77 25.54 39.12 37.25 12.22 17.928 6 1390.00 2.60 20.51 31.89 50.14 39.55 18.38 21.542 7 1584.00 2.55 11.73 20.36 29.24 35.57 9.30 25.581 8 111.00 2.63 16.88 24.92 40.73 35.67 14.88 25.873 表 2 监测点的主应力变化
Table 2. The change of principal stress at monitoring points
序号 最大主应力变化/Pa 最小主应力变化/Pa 1 19.2×107 5.4×107 2 9.8×107 1.3×107 3 6.2×107 1.2×107 -
[1] 曹俊兴,刘树根,何晓燕,等. 从汶川地震分析龙门山与四川盆地的动力耦合机制及其对川西深层油气运移聚散的影响[J]. 成都理工大学学报:自然科学版,2009,36(6):605-616Cao Junxing,Liu Shugen,He Xiaoyan,et al. Dynamic coupling mechanism between Longmenshan and Sichuan basin and its impact on the hydrocarbon migration in west Sichuan based on the analysis of the characteristics of Wenchuan earthquake[J]. Journal of Chengdu University of Technology:Science & Technology Edition,2009,36(6):605-616 [2] 曹俊兴, 刘树根, 何晓燕. 震控成藏导论[M]. 北京: 科学出版社, 2014Cao Junxing, Liu Shugen, He Xiaoyan. Introduction to seismic control and accumulation[M]. Beijing: Science Press, 2014 [3] C Lx. Fundamentals of rock mechanics[M]. London: Chapman and Hall, 1976 [4] Labuz J F,Zang A. Mohr−coulomb failure criterion[J]. Rock Mechanics and Rock Engineering,2012,45(6):975-979 doi: 10.1007/s00603-012-0281-7 [5] Meyer J P,Labuz J F. Linear failure criteria with three principal stresses[J]. International Journal of Rock Mechanics and Mining Sciences,2013,60:180-187 doi: 10.1016/j.ijrmms.2012.12.040 [6] 黄福明. 断层力学概论[M]. 北京: 地震出版社, 2013Huang Fuming. Introduction to fault mechanics[M]. Beijing: Seismological Press, 2013 [7] Anderson E M. The dynamics of faulting[M]. Edinburgh, UK:Oliver and Boyd [8] Papadimitriou E,Wen X Z,Karakostas V,et al. Earthquake triggering along the Xianshuihe fault zone of western Sichuan,China[J]. Pure and Applied Geophysics,2004,161(8):1683-1707 doi: 10.1007/s00024-003-2471-4 [9] 戴俊. 爆破工程. 第2版[M]. 北京: 机械工业出版社, 2015Dai Jun. Blasting engineering. 2nd edition[M]. Beijing: China Machinery Industry Press, 2015 [10] Aiken C,Meng X F,Hardebeck J. Testing for the ‘predictability’ of dynamically triggered earthquakes in the Geysers geothermal field[J]. Earth and Planetary Science Letters,2018,486:129-140 doi: 10.1016/j.jpgl.2018.01.015 [11] Okada Y. Internal deformation due to shear and tensile faults in a half-space[J]. Bull. Seismol. Soc. Amer.,1992,82(2):1018-1040 doi: 10.1785/BSSA0820021018 [12] Wang R J,Lorenzo-Martín F,Roth F. PSGRN/PSCMP—a new code for calculating co- and post-seismic deformation,geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Computers & Geosciences,2006,32(4):527-541 [13] 梁庆国,韩文峰,谌文武,等. 岩体地震动力破坏问题研究[J]. 岩石力学与工程学报,2003,22(增刊2):2783-2788Liang Qingguo,Han Wenfeng,Chen Wenwu,et al. Discussion on rockmass failure under seismic load[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(S2):2783-2788 [14] 蒋锋云,朱良玉,李玉江. 基于三维粘弹性有限元研究汶川地震对川滇地区的震后影响[J]. 地震研究,2018,41(2):233-243 doi: 10.3969/j.issn.1000-0666.2018.02.011Jiang Fengyun,Zhu Liangyu,Li Yujiang. Study of the co-seismic and post-seismic deformation deduced by the Wenchuan earthquake in the Sichuan-Yunnan region by three dimensional viscoelastic finite element model[J]. Journal of Seismological Research,2018,41(2):233-243 doi: 10.3969/j.issn.1000-0666.2018.02.011 [15] 廖振鹏,袁一凡. 波动理论基础知识及其在地震工程中的初步应用(续)[J]. 华南地震,1994(1):70-76Liao Zhenpeng,Yuan Yifan. Essential knowledge on wave theory and its preliminary application to earthquake engineering (continuous)[J]. South China Journal of Seismology,1994(1):70-76 [16] 肖正学, 张志呈, 李朝鼎. 爆破地震波动力学基础与地震效应[M]. 成都: 电子科技大学出版社, 2004Xiao Zhengxue, Zhang Zhicheng, Li Chaoding. The dynamic basis of blasting seismic wave and seismic effect[M]. Chengdu: University of Electronic Science and Technology Press, 2004 [17] A. H. 哈努卡耶夫. 矿岩爆破物理过程[M]. 北京: 冶金工业出版社, 1980A. H. Hanukayev. Physical process of ore blasting[M]. Beijing: Metallurgical Industry Press, 1980 [18] 刘喜武. 弹性波场论基础[M]. 青岛: 中国海洋大学出版社, 2008Liu Xiwu. Fundamentals of elastic wave field theory[M]. Qingdao: Ocean University of China Press, 2008 [19] 颜照坤. 龙门山与前陆盆地之间的剥蚀-沉积系统研究[D]. 成都: 成都理工大学, 2011Yan Zhaokun. The study of denudation-accumulation system between the Longmenshan and foreland basin[D]. Chengdu: Chengdu University of Technology, 2011 [20] 李勇. 龙门山前陆盆地沉积及构造演化[D]. 成都: 成都理工学院, 1994Li Yong. The sedimentary and tectonic evolution of the Longmenshan foreland basin[D]. Chengdu: Chengdu Institute of Technology, 1994 [21] Zhang Y H,Clennell M B,Delle Piane C,et al. Numerical modelling of fault reactivation in carbonate rocks under fluid depletion conditions−2D generic models with a small isolated fault[J]. Journal of Structural Geology,2016,93:17-28 doi: 10.1016/j.jsg.2016.10.002 [22] 王让甲. 声波岩石分级和岩石动弹性力学参数的分析研究[M]. 北京: 地质出版社, 1997Wang Rangjia. The acoustic classification of rocks and study of dynamico-elastic mechanical parameters of rocks[M]. Beijing: Geological Publishing House, 1997 [23] 贺永年, 韩立军, 王衍森. 岩石力学简明教程[M]. 徐州: 中国矿业大学出版社, 2010He Yongnian, Han Lijun, Wang Yansen. A concise course of rock mechanics[M]. Xuzhou: China University of Mining and Technology Press, 2010 -