zhenbo

ISSN 2096-7780 CN 10-1665/P

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地震波诱发的深部地层动应力机制及断裂位移研究

张子平 袁青 熊齐欢

张子平, 袁青, 熊齐欢. 地震波诱发的深部地层动应力机制及断裂位移研究[J]. 地震科学进展, 2021, (11): 489-497. doi: 10.3969/j.issn.2096-7780.2021.11.02
引用本文: 张子平, 袁青, 熊齐欢. 地震波诱发的深部地层动应力机制及断裂位移研究[J]. 地震科学进展, 2021, (11): 489-497. doi: 10.3969/j.issn.2096-7780.2021.11.02
Zhang Ziping, Yuan Qing, Xiong Qihuan. Study on the mechanism of dynamic stress and fault displacement in deep formations induced by seismic waves[J]. Progress in Earthquake Sciences, 2021, (11): 489-497. doi: 10.3969/j.issn.2096-7780.2021.11.02
Citation: Zhang Ziping, Yuan Qing, Xiong Qihuan. Study on the mechanism of dynamic stress and fault displacement in deep formations induced by seismic waves[J]. Progress in Earthquake Sciences, 2021, (11): 489-497. doi: 10.3969/j.issn.2096-7780.2021.11.02

地震波诱发的深部地层动应力机制及断裂位移研究

doi: 10.3969/j.issn.2096-7780.2021.11.02
基金项目: 云南省交通运输厅科技创新示范项目(云交科教[2019]15号)资助。
详细信息
    通讯作者:

    张子平(1995-),男,助理工程师,主要从事地质工程研究。E-mail: 565069372@qq.com

  • 中图分类号: P315.2

Study on the mechanism of dynamic stress and fault displacement in deep formations induced by seismic waves

  • 摘要: 借鉴弹性波动力学理论和爆破地震应力计算方法,结合地震波在岩层中的折射效应,以地震波加速度为基础数据,分析岩体在地震波作用下的受力。以汶川地震影响下的龙门山前陆盆地地下岩层的受力变形情况为例,通过计算分析和数值模拟,证实所用方法在求解分析地震波在各向同性岩石层间传播动力的可行性。同时验证汶川地震造成龙门山前陆盆地地下深部地层的断层破坏。

     

  • 图  1  地震波在厚地层中的反射与透射

    Figure  1.  Reflection and transmission of seismic waves in thick formations

    图  2  主体地层模型

    Figure  2.  The model of main stratigraphic

    图  3  监测点在XOZ平面上的投影

    Figure  3.  Projection of the monitoring point on the XOZ plane

    图  4  地下分层情况与质点分布

    Figure  4.  Underground stratification and particle distribution

    图  5  加速度时程信息

    Figure  5.  Acceleration time history information

    图  6  第7层质点2处的P波和S波应力影响

    Figure  6.  The influence of P-wave and S-wave stress at the particle #2 of the 7th layer

    图  7  动力过程中的最大不平衡力

    Figure  7.  Maximum unbalanced force during dynamic process

    图  8  动力过程中的主应力变化

    Figure  8.  The change of principal stress during dynamic process

    图  9  监测点的主应力变化

    Figure  9.  The change of principal stress at monitoring points

    图  10  动力过程中的监测点位移

    (a) 13个点的Z向位移;(b) 中间斜面监测点的X向位移

    Figure  10.  Displacement of monitoring point during dynamic process

    (a) Z displacement of 13 points;(b) X displacement of monitoring point of middle slope

    图  11  X-Z面监测的剪切应变变化

    (a) 初始;(b) 500 step后;(c) 1000 step后;(d) 1500 step后;(e) 2000 step后;(f) 2500 step后;(g) 400000 step之后,即结束时

    Figure  11.  Shear strain change monitored by X-Z plane

    (a) initial;(b) after 500 steps;(c) after 1000 steps;(d) after 1500 steps;(e) after 2000 steps; (f) after 2500 steps;(g) after 400000 steps, at the end

    表  1  各地层的物理力学参数与围岩应力

    Table  1.   Physical mechanical parameters and surrounding rock stress of each layer

    地层
    序号
    厚度/m密度/g·cm−3剪切
    模量G/GPa
    体积
    模量K/GPa
    弹性
    模量E/GPa
    内摩擦
    角/°
    内聚力
    C/GPa
    围岩
    压力/MPa
    1541.002.3717.3526.4441.2834.0017.001.281
    22441.002.6018.2628.9144.9038.4815.497.628
    3870.002.6521.6332.0252.0939.7514.329.933
    41328.002.6119.0626.4246.3638.3320.8613.399
    51735.002.6115.7725.5439.1237.2512.2217.928
    61390.002.6020.5131.8950.1439.5518.3821.542
    71584.002.5511.7320.3629.2435.579.3025.581
    8111.002.6316.8824.9240.7335.6714.8825.873
    下载: 导出CSV

    表  2  监测点的主应力变化

    Table  2.   The change of principal stress at monitoring points

    序号最大主应力变化/Pa最小主应力变化/Pa
    119.2×1075.4×107
    29.8×1071.3×107
    36.2×1071.2×107
    下载: 导出CSV
  • [1] 曹俊兴,刘树根,何晓燕,等. 从汶川地震分析龙门山与四川盆地的动力耦合机制及其对川西深层油气运移聚散的影响[J]. 成都理工大学学报:自然科学版,2009,36(6):605-616

    Cao Junxing,Liu Shugen,He Xiaoyan,et al. Dynamic coupling mechanism between Longmenshan and Sichuan basin and its impact on the hydrocarbon migration in west Sichuan based on the analysis of the characteristics of Wenchuan earthquake[J]. Journal of Chengdu University of Technology:Science & Technology Edition,2009,36(6):605-616
    [2] 曹俊兴, 刘树根, 何晓燕. 震控成藏导论[M]. 北京: 科学出版社, 2014

    Cao Junxing, Liu Shugen, He Xiaoyan. Introduction to seismic control and accumulation[M]. Beijing: Science Press, 2014
    [3] C Lx. Fundamentals of rock mechanics[M]. London: Chapman and Hall, 1976
    [4] Labuz J F,Zang A. Mohr−coulomb failure criterion[J]. Rock Mechanics and Rock Engineering,2012,45(6):975-979 doi: 10.1007/s00603-012-0281-7
    [5] Meyer J P,Labuz J F. Linear failure criteria with three principal stresses[J]. International Journal of Rock Mechanics and Mining Sciences,2013,60:180-187 doi: 10.1016/j.ijrmms.2012.12.040
    [6] 黄福明. 断层力学概论[M]. 北京: 地震出版社, 2013

    Huang Fuming. Introduction to fault mechanics[M]. Beijing: Seismological Press, 2013
    [7] Anderson E M. The dynamics of faulting[M]. Edinburgh, UK:Oliver and Boyd
    [8] Papadimitriou E,Wen X Z,Karakostas V,et al. Earthquake triggering along the Xianshuihe fault zone of western Sichuan,China[J]. Pure and Applied Geophysics,2004,161(8):1683-1707 doi: 10.1007/s00024-003-2471-4
    [9] 戴俊. 爆破工程. 第2版[M]. 北京: 机械工业出版社, 2015

    Dai Jun. Blasting engineering. 2nd edition[M]. Beijing: China Machinery Industry Press, 2015
    [10] Aiken C,Meng X F,Hardebeck J. Testing for the ‘predictability’ of dynamically triggered earthquakes in the Geysers geothermal field[J]. Earth and Planetary Science Letters,2018,486:129-140 doi: 10.1016/j.jpgl.2018.01.015
    [11] Okada Y. Internal deformation due to shear and tensile faults in a half-space[J]. Bull. Seismol. Soc. Amer.,1992,82(2):1018-1040 doi: 10.1785/BSSA0820021018
    [12] Wang R J,Lorenzo-Martín F,Roth F. PSGRN/PSCMP—a new code for calculating co- and post-seismic deformation,geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Computers & Geosciences,2006,32(4):527-541
    [13] 梁庆国,韩文峰,谌文武,等. 岩体地震动力破坏问题研究[J]. 岩石力学与工程学报,2003,22(增刊2):2783-2788

    Liang Qingguo,Han Wenfeng,Chen Wenwu,et al. Discussion on rockmass failure under seismic load[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(S2):2783-2788
    [14] 蒋锋云,朱良玉,李玉江. 基于三维粘弹性有限元研究汶川地震对川滇地区的震后影响[J]. 地震研究,2018,41(2):233-243 doi: 10.3969/j.issn.1000-0666.2018.02.011

    Jiang Fengyun,Zhu Liangyu,Li Yujiang. Study of the co-seismic and post-seismic deformation deduced by the Wenchuan earthquake in the Sichuan-Yunnan region by three dimensional viscoelastic finite element model[J]. Journal of Seismological Research,2018,41(2):233-243 doi: 10.3969/j.issn.1000-0666.2018.02.011
    [15] 廖振鹏,袁一凡. 波动理论基础知识及其在地震工程中的初步应用(续)[J]. 华南地震,1994(1):70-76

    Liao Zhenpeng,Yuan Yifan. Essential knowledge on wave theory and its preliminary application to earthquake engineering (continuous)[J]. South China Journal of Seismology,1994(1):70-76
    [16] 肖正学, 张志呈, 李朝鼎. 爆破地震波动力学基础与地震效应[M]. 成都: 电子科技大学出版社, 2004

    Xiao Zhengxue, Zhang Zhicheng, Li Chaoding. The dynamic basis of blasting seismic wave and seismic effect[M]. Chengdu: University of Electronic Science and Technology Press, 2004
    [17] A. H. 哈努卡耶夫. 矿岩爆破物理过程[M]. 北京: 冶金工业出版社, 1980

    A. H. Hanukayev. Physical process of ore blasting[M]. Beijing: Metallurgical Industry Press, 1980
    [18] 刘喜武. 弹性波场论基础[M]. 青岛: 中国海洋大学出版社, 2008

    Liu Xiwu. Fundamentals of elastic wave field theory[M]. Qingdao: Ocean University of China Press, 2008
    [19] 颜照坤. 龙门山与前陆盆地之间的剥蚀-沉积系统研究[D]. 成都: 成都理工大学, 2011

    Yan Zhaokun. The study of denudation-accumulation system between the Longmenshan and foreland basin[D]. Chengdu: Chengdu University of Technology, 2011
    [20] 李勇. 龙门山前陆盆地沉积及构造演化[D]. 成都: 成都理工学院, 1994

    Li Yong. The sedimentary and tectonic evolution of the Longmenshan foreland basin[D]. Chengdu: Chengdu Institute of Technology, 1994
    [21] Zhang Y H,Clennell M B,Delle Piane C,et al. Numerical modelling of fault reactivation in carbonate rocks under fluid depletion conditions−2D generic models with a small isolated fault[J]. Journal of Structural Geology,2016,93:17-28 doi: 10.1016/j.jsg.2016.10.002
    [22] 王让甲. 声波岩石分级和岩石动弹性力学参数的分析研究[M]. 北京: 地质出版社, 1997

    Wang Rangjia. The acoustic classification of rocks and study of dynamico-elastic mechanical parameters of rocks[M]. Beijing: Geological Publishing House, 1997
    [23] 贺永年, 韩立军, 王衍森. 岩石力学简明教程[M]. 徐州: 中国矿业大学出版社, 2010

    He Yongnian, Han Lijun, Wang Yansen. A concise course of rock mechanics[M]. Xuzhou: China University of Mining and Technology Press, 2010
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  63
  • PDF下载量:  13
出版历程
  • 收稿日期:  2021-07-02
  • 修回日期:  2021-09-16

目录

    /

    返回文章
    返回
    本系统由北京仁和汇智信息技术有限公司设计开发 百度统计