Research progress of the extraction body waves from ambient noise
-
摘要: 地球深部结构探测是地球物理学的核心领域,而地震体波可以深入地球内部且分辨率较高,是研究地球内部结构不可或缺的技术手段。基于背景噪声提取高信噪比体波信号技术的迅速发展,极大地促进了地震学的发展和应用范围,使其在地球深部结构成像、城市浅层空间探测等领域日益发挥出重要作用。本文详细综述了如何利用地震干涉法及台阵处理技术提取出用于研究不同探测尺度(局部、区域、全球)的各类体波信号。其中,地震干涉法通过对地震台站记录到的波形信号进行互相关,抵消掉重合的射线路径,最后得到台站对之间的地震记录;而台阵处理方法是基于接收器台阵发展起来的数据处理手段,该技术不仅能够进一步提高信噪比(SNR),而且能够获得方位信息。一般来讲,背景噪声中包含的体波信号能量远低于面波信号能量,提取难度大。本文着重介绍了Bin-叠加法、双波束方法(DBF)以及相位加权叠加法(PWS),并对3种方法的适用条件进行了总结。Abstract: The exploration of the deep structure of the earth is the core part of geophysical research. Seismic body waves can penetrate deep into the earth with a high resolution and it is an indispensable technical means for studying the internal structure of the earth. The rapid development of technology for extracting high signal-to-noise ratio body wave signals based on ambient noise has greatly promoted the development and application of seismology, making it increasingly play an important role in the imaging of deep earth structures and shallow urban space exploration. This article reviews in detail how to use seismic interferometry and array processing technology to extract various types of body wave signals for research on different detection scales (local, regional, global). Among them, the seismic interferometry cross-correlates the waveform signals recorded by the seismic stations to cancel out the coincident ray paths, and finally the seismic records between the station pairs are obtained; and the array processing method is based on the data developed by the receiver array processing means. This technology can not only further improve the signal-to-noise ratio (SNR), but also obtain position information. Generally speaking, since the energy of the body wave signal contained in the ambient noise is much weaker than that of the surface wave signal, it is difficult to extract. This article focuses on the Bin stack method, the double beamforming method (DBF) and the phase-weighted stacks method (PWS), and concludes the applicable conditions of the three methods.
-
Key words:
- ambient noise /
- body waves /
- seismic interferometry /
- seismic array /
- earth structure imaging
-
图 4 Tono台阵上观察到的互相关函数,互相关函数在每隔1 km的间隔距离上取平均值。灰色 (上图) 显示了两侧的交叉相关性。红色 (中间) 和蓝色 (底部) 显示了两侧相关性 (灰色) 的时间对称和时间反对称部分。与两侧相关性相比,时间对称和时间反对称分量的幅度放大了2倍。灰色虚线表示波以6.0 km/s和3.0 km/s的速度传播[70]
Figure 4. Observed cross-correlation functions at Tono array. Cross-correlation functions are averaged over every 1 km separation distance. Gray (top) shows two side cross correlations. Red (middle) and blue (bottom) show the time-symmetric and time-antisymmetric parts of the two side correlations (gray). The amplitude of the time-symmetric and time-antisymmetric components is enlarged by a factor of 2 as compared to that of the two side correlations. Gray broken lines indicate the traveltimes of waves with 6.0 km/s and 3.0 km/s[70]
图 9 (a) 显示芬兰北部地震台阵 (红色三角形) 的地图;(b) 基于背景噪声互相关 (中间)、AK135模型 (左) 、该区域的最终模型 (右) 数据提取的410 km和660 km不连续面反射P波信号[32]
Figure 9. (a) Map showing the stations of the seismic array (red triangles) in northern Finland;(b) Extracted reflected waves from 410-km and 660-km discontinuities from ambient noise (middle),synthetic with AK135 model (left), and final model for this region (right)[32]
图 11 (a) 通过Bin-叠加得到的各分量 (TT、RR、ZZ) 的CCFs;(b) 基于全球标准参考地球模型得到的合成格林函数 (TT、RR、ZZ);(c) 图a中0°—40°震中距范围内的局部放大图,以显示出清晰的P波和PL波[37]
Figure 11. (a) CCFs of each component obtained by Bin-stacked (TT,RR,ZZ);(b) TT, RR, and ZZ components of the synthetic Green’s functions obtained with the spherical Earth model;(c) A partial zoom up view within the range of 0°—40° epicenter distance to show clear P and PL waves in figure (a) [37]
图 12 北安纳托利亚断裂带反射P波响应。从左往右分别为不同剖面上的台站自相关叠加结果,红线表示推测可能存在的间断面。其中根据先验信息推测12 s处为莫霍面[93]
Figure 12. P wave reflection response of the North Anatolia fault zone. From left to right are the superposition results of station autocorrelation on different sections, and the red dashed lines indicate possible discontinuities that may exist. Among them, according to the prior information, it is inferred that the Moho surface is at 12 s[93]
图 13 尾波与直达波对介质性质微小变化的敏感度对比。在震源和接收器都不变的情况下,两条曲线(红、蓝)分别代表仅温度发生微小变化时得到的两个互相关波形[48]
Figure 13. The sensitivity comparison of media’s subtle variations between coda wave and first arrival wave. In the case that the source and receiver are unchanged, the two curves (red and blue) respectively represent the two cross-correlation waveforms obtained only when the temperature changes slightly[48]
图 14 (a) I2与II2震相的射线路径,CMB:核幔边界;ICB:内外核边界;(b) 57个台站的位置 (实心三角形) 及其对跖点 (空心三角形) 以及地核内部 (红色十字) 的各向异性快轴位置;(c) 自相关叠加得到的经验格林函数;(d) 外内核 (OIC) 和地核内部 (IIC) 的各向异性示意图[90]
Figure 14. (a) Ray paths of I2 and II2 waves from a station to its antipode and back;(b) Locations of 57 station arrays (filled triangles) and antipodes (open triangles) and the IIC fast axis (red crosses);(c) Example EGFs from autocorrelation stacks;(d) Schematic for the anisotropy of the OIC and the IIC[90]
图 15 通过Bin-叠加提高信噪比的例子[74]
(a) 接收器的位置,红点表示2500个接收器的位置,白色三角形表示 (b) 中使用的互相关参考接收器;(b) 互相关道集;(c) 使用所有互相关对的Bin-叠加道集
Figure 15. Example to improve the SNR after binned stack[74]
(a) Location of receivers,the red dots show the location of 2500 receivers,and the white star indicates the reference receiver for cross-correlation used in (b);(b) Cross-correlation gather;(c) Bin-stacked gather using all correlation pairs
图 16 使用DBF提高信噪比的例子,黄色箭头显示台阵之间的直达体波[115]
(a) 研究区域接收器台阵几何形状;(b) 单个接收器对之间的小时相关函数;(c) 使用台阵中的所有接收器并进行Bin-叠加;(d) 使用台阵中的所有接收器并进行DBF处理
Figure 16. Example to improve the SNR after DBF,the yellow arrows highlight the direct body waves between arrays[115]
(a) Geometry of receiver arrays;(b) Hourly crosscorrelation functions between two receivers;(c) Using all receivers in the arrays and computing binned stack;(d) Using all receivers in the arrays and computing DBF
-
[1] Weaver R L,Lobkis O I. Ultrasonics without a source:Thermal fluctuation correlations at MHz frequencies[J]. Phys. Rev. Lett.,2001,87(13):134301 doi: 10.1103/PhysRevLett.87.134301 [2] Snieder R. Extracting the Green’s function from the correlation of coda waves:A derivation based on stationary phase[J]. Phys. Rev. E.,2004,69(4):046610 doi: 10.1103/PhysRevE.69.046610 [3] Wapenaar K. Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation[J]. Phys. Rev. Lett.,2004,93(25):254301 doi: 10.1103/PhysRevLett.93.254301 [4] Gouedard P,Stehly L,Brenguier F,et al. Cross-correlation of random fields:Mathematical approach and applications[J]. Geophys. Prospect.,2008,56(3):375-393 doi: 10.1111/j.1365-2478.2007.00684.x [5] Shapiro N M,Campillo M,Stehly L,et al. High-resolution surface-wave tomography from ambient seismic noise[J]. Science,2005,307:1615-1618 doi: 10.1126/science.1108339 [6] Yao H J,van der Hilst R D,de Hoop M V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis - I. Phase velocity maps[J]. Geophys. J. Int.,2006,166(2):732-744 doi: 10.1111/j.1365-246X.2006.03028.x [7] Yang Y J,Ritzwoller M H,Levshin A L,et al. Ambient noise rayleigh wave tomography across Europe[J]. Geophys. J. Int.,2007,168(1):259-274 doi: 10.1111/j.1365-246X.2006.03203.x [8] Yang Y J,Zheng Y,Chen J,et al. Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography[J]. Geochem. Geophys. Geosyst.,2010,11(8):Q08010 [9] Bensen G D,Ritzwoller M H,Shapiro N M. Broadband ambient noise surface wave tomography across the United States[J]. J. Geophys. Res. Solid Earth,2008,113(B5):B05306 [10] Lin F C,Moschetti M P,Ritzwoller M H. Surface wave tomography of the western United States from ambient seismic noise:Rayleigh and Love wave phase velocity maps[J]. Geophys. J. Int.,2008,173(1):281-298 doi: 10.1111/j.1365-246X.2008.03720.x [11] Zheng S H,Sun X L,Song X D,et al. Surface wave tomography of China from ambient seismic noise correlation[J]. Geochem. Geophys. Geosyst.,2008,9:Q05020 [12] Stehly L,Fry B,Campillo M,et al. Tomography of the Alpine region from observations of seismic ambient noise[J]. Geophys. J. Int.,2009,178(1):338-350 doi: 10.1111/j.1365-246X.2009.04132.x [13] Fu Y Y V,Li A B,Chen Y J. Crustal and upper mantle structure of southeast Tibet from Rayleigh wave tomography[J]. J. Geophys. Res. Solid Earth,2010,115:B12323 doi: 10.1029/2009JB007160 [14] Li H Y,Liu X,Li X F,et al. Rayleigh wave group velocity distribution in Ningxia[J]. J. Earth Sci.,2011,22(1):117-123 doi: 10.1007/s12583-011-0162-0 [15] Zhou L Q,Xie J Y,Shen W S,et al. The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography[J]. Geophys. J. Int.,2012,189(3):1565-1583 doi: 10.1111/j.1365-246X.2012.05423.x [16] Guo Z,Gao X,Yao H J,et al. Midcrustal low-velocity layer beneath the central Himalaya and southern Tibet revealed by ambient noise array tomography[J]. Geochem. Geophys. Geosyst.,2009,10(5):Q05007 [17] Guo Z,Gao X,Wang W,et al. Upper- and mid-crustal radial anisotropy beneath the central Himalaya and southern Tibet from seismic ambient noise tomography[J]. Geophys. J. Int.,2012,189(2):1169-1182 doi: 10.1111/j.1365-246X.2012.05425.x [18] 张明辉,武振波,马立雪,等. 短周期密集台阵被动源地震探测技术研究进展[J]. 地球物理学进展,2020,35(2):495-511 doi: 10.6038/pg2020EE0022Zhang Minghui,Wu Zhenbo,Ma Lixue,et al. Research progress of passive source detection technology based on short-period dense seismic array[J]. Progress in Geophysics,2020,35(2):495-511 doi: 10.6038/pg2020EE0022 [19] Forghani F,Snieder R. Underestimation of body waves and feasibility of surface-wave reconstruction by seismic interferometry[J]. The Leading Edge,2010,29(7):790-794 doi: 10.1190/1.3462779 [20] Wapenaar K. Green’s function retrieval by cross-correlation in case of one-sided illumination[J]. Geophys. Res. Lett.,2006,33(19):L19304 doi: 10.1029/2006GL027747 [21] Schuster G T,Yu J,Sheng J,et al. Interferometric/daylight seismic imaging[J]. Geophys. J. Int.,2004,157(2):838-852 doi: 10.1111/j.1365-246X.2004.02251.x [22] Bakulin A,Calvert R. The virtual source method:Theory and case study[J]. Geophysics,2006,71(4):SI139-SI150 doi: 10.1190/1.2216190 [23] Draganov D,Wapenaar K,Mulder W,et al. Retrieval of reflections from seismic background-noise measurements[J]. Geophys. Res. Lett.,2007,34(4):L04305 [24] Draganov D,Campman X,Thorbecke J,et al. Reflection images from ambient seismic noise[J]. Geophysics,2009,74(6):A63-A67 [25] Draganov D,Campman X,Thorbecke J,et al. Seismic exploration-scale velocities and structure from ambient seismic noise (> 1 Hz)[J]. J. Geophys. Res. Solid Earth,2013,118(8):4345-4360 doi: 10.1002/jgrb.50339 [26] Roux P,Sabra K G,Gerstoft P,et al. P-waves from cross-correlation of seismic noise[J]. Geophys. Res. Lett.,2005,32(19):L19303 [27] Zhang J,Gerstoft P,Shearer P M. High-frequency P-wave seismic noise driven by ocean winds[J]. Geophys. Res. Lett.,2009,36:L09302 [28] Koper K D,de Foy B,Benz H. Composition and variation of noise recorded at the Yellowknife Seismic Array,1991—2007[J]. J. Geophys. Res. Solid Earth,2009,114:B10310 doi: 10.1029/2009JB006307 [29] Zhan Z W,Ni S D,Helmberger D V,et al. Retrieval of Moho-reflected shear wave arrivals from ambient seismic noise[J]. Geophys. J. Int.,2010,182(1):408-420 [30] Ruigrok E,Campman X,Wapenaar K. Extraction of P-wave reflections from microseisms[J]. C. R. Geosci.,2011,343(8-9):512-525 doi: 10.1016/j.crte.2011.02.006 [31] Nakata N,Snieder R,Tsuji T,et al. Shear wave imaging from traffic noise using seismic interferometry by cross-coherence[J]. Geophysics,2011,76(6):SA97-SA106 doi: 10.1190/geo2010-0188.1 [32] Poli P,Campillo M,Pedersen H,et al. Body-wave imaging of earth’s mantle discontinuities from ambient seismic noise[J]. Science,2012,338(6110):1063-1065 doi: 10.1126/science.1228194 [33] Tibuleac I M,von Seggern D. Crust-mantle boundary reflectors in Nevada from ambient seismic noise autocorrelations[J]. Geophys. J. Int.,2012,189(1):493-500 doi: 10.1111/j.1365-246X.2011.05336.x [34] Boue P,Poli P,Campillo M,et al. Teleseismic correlations of ambient seismic noise for deep global imaging of the Earth[J]. Geophys. J. Int.,2013,194(2):844-848 doi: 10.1093/gji/ggt160 [35] Lin F C,Tsai V C. Seismic interferometry with antipodal station pairs[J]. Geophys. Res. Lett.,2013,40(17):4609-4613 doi: 10.1002/grl.50907 [36] Gorbatov A,Saygin E,Kennett B L N. Crustal properties from seismic station autocorrelograms[J]. Geophys. J. Int.,2013,192(2):861-870 doi: 10.1093/gji/ggs064 [37] Nishida K. Global propagation of body waves revealed by cross-correlation analysis of seismic hum[J]. Geophys. Res. Lett.,2013,40(9):1691-1696 doi: 10.1002/grl.50269 [38] Shirzad T,Shomali Z H. Extracting stable seismic core phases from ambient seismic noise[J]. Bull. Seismol. Soc. Amer.,2015,106(1):307-312 [39] Tonegawa T,Nishida K,Watanabe T,et al. Seismic interferometry of teleseicmic S-wave coda for retrieval of body waves:An application to the Philippine Sea slab underneath the Japanese Islands[J]. Geophys. J. Int.,2009,178(3):1574-1586 doi: 10.1111/j.1365-246X.2009.04249.x [40] Claerbout,Jon F. Synthesis of a layered medium from its acoustic transmission response[J]. Geophysics,1968,33(2):264-269 doi: 10.1190/1.1439927 [41] Schuster G T. Theory of daylight/interferometric imaging; proceedings of the 63rd annual EAGE meeting, F, 2001 [C]. 2001 [42] Wapenaar K,Slob E,Snieder R. On seismic interferometry,the generalized optical theorem,and the scattering matrix of a point scatterer[J]. Geophysics,2010,75(3):SA27-SA35 doi: 10.1190/1.3374359 [43] Wapenaar K,Fokkema J,Snieder R. Retrieving the Green’s function in an open system by cross correlation:A comparison of approaches[J]. J. Acoust. Soc. Am.,2005,118(5):2783-2786 doi: 10.1121/1.2046847 [44] Wapenaar K,Fokkema J. Green’s function representations for seismic interferometry[J]. Geophysics,2006,71(4):SI33-SI46 doi: 10.1190/1.2213955 [45] Wapenaar K,Draganov D,Robertsson J. Introduction to the supplement on seismic interferometry[J]. Geophysics,2006,71(4):SI1-SI4 doi: 10.1190/gpysa7.71.si1_1 [46] Wapenaar K,Thorbecke J,Draganov D. Relations between reflection and transmission responses of three-dimensional inhomogeneous media[J]. Geophys. J. Int.,2004,156(2):179-194 doi: 10.1111/j.1365-246X.2003.02152.x [47] Snieder R,Gret A,Douma H,et al. Coda wave interferometry for estimating nonlinear behavior in seismic velocity[J]. Science,2002,295(5563):2253-2255 doi: 10.1126/science.1070015 [48] Snieder R. Coda wave interferometry and the equilibration of energy in elastic media[J]. Phys. Rev. E.,2002,66(4):046615 doi: 10.1103/PhysRevE.66.046615 [49] Snieder R,Vrijlandt M. Constraining the source separation with coda wave interferometry:Theory and application to earthquake doublets in the Hayward fault,California[J]. J. Geophys. Res. Solid Earth,2005,110:B04301 [50] Snieder R. The theory of coda wave interferometry[J]. Pure Appl. Geophys.,2006,163(2-3):455-473 doi: 10.1007/s00024-005-0026-6 [51] Gret A,Snieder R,Aster R C,et al. Monitoring rapid temporal change in a volcano with coda wave interferometry[J]. Geophys. Res. Lett.,2005,32(6):L06304 [52] Curtis A,Gerstoft P,Sato H,et al. Seismic interferometry—turning noise into signal[J]. The Leading Edge,2006,25(9):1082-1092 doi: 10.1190/1.2349814 [53] 陶毅,符力耘,孙伟家,等. 地震波干涉法研究进展综述[J]. 地球物理学进展,2010,25(5):1775-1784Tao Yi,Fu Liyun,Sun Weijia,et al. A review of seismic interferometry[J]. Progress in Geophysics,2010,25(5):1775-1784 [54] Snieder R,Sheiman J,Calvert R. Equivalence of the virtual-source method and wave-field deconvolution in seismic interferometry[J]. Phys. Rev. E.,2006,73(6):066620 doi: 10.1103/PhysRevE.73.066620 [55] Snieder R,Safak E. Extracting the building response using seismic interferometry:Theory and application to the Millikan Library in Pasadena,California[J]. Bull. Seismol. Soc. Amer.,2006,96(2):586-598 doi: 10.1785/0120050109 [56] Prieto G A,Lawrence J F,Beroza G C. Anelastic Earth structure from the coherency of the ambient seismic field[J]. J. Geophys. Res. Solid Earth,2009,114:B07303 [57] Aki K. Space and time spectra of stationary stochastic waves,with special reference to microtremors[J]. Bull. Earthq. Res. Inst.,1957,35:415-456 [58] Slob E,Wapenaar K. Electromagnetic Green’s functions retrieval by cross-correlation and cross-convolution in media with losses[J]. Geophys. Res. Lett.,2007,34(5):5307 [59] Vasconcelos I,Snieder R,Hornby B. Imaging internal multiples from subsalt VSP data:Examples of target-oriented interferometry[J]. Geophysics,2008,73(4):S157-S168 doi: 10.1190/1.2944168 [60] Wapenaar K,van der Neut J,Ruigrok E. Passive seismic interferometry by multidimensional deconvolution[J]. Geophysics,2008,73(6):A51-A56 doi: 10.1190/1.2976118 [61] Nakata N,Snieder R,Behm M. Body-wave interferometry using regional earthquakes with multidimensional deconvolution after wavefield decomposition at free surface[J]. Geophys. J. Int.,2014,199(2):1125-1137 doi: 10.1093/gji/ggu316 [62] Zhang J,Gerstoft P,Bromirski P D. Pelagic and coastal sources of P-wave microseisms:Generation under tropical cyclones[J]. Geophys. Res. Lett.,2010,37:L15301 [63] Shapiro N M. Applications with surface waves extracted from ambient seismic noise[M]// Nakata N, Gualtieri L, Fichtner A. Seismic ambient noise. New York : Cambridge University Press, 2019: 218-238 [64] Nakata N, Nishida K. Body wave exploration[M]//Nakata N, Gualtieri L, Fichtner A. Seismic ambient noise. New York: Cambridge University Press, 2019 : 239-266 [65] Vasconcelos I,Snieder R. Interferometry by deconvolution:Part 1—Theory for acoustic waves and numerical examples[J]. Geophysics,2008,73(3):S115-S128 doi: 10.1190/1.2904554 [66] Bensen G D, Ritzwoller M H, Shapiro N M, et al. Extending ambient noise surface wave tomography to continental scales: application across the United States[C]//American Geophysical Union, Fall Meeting 2005 : S31A-0274 [67] Zheng Y,Shen W S,Zhou L Q,et al. Crust and uppermost mantle beneath the North China Craton,northeastern China,and the Sea of Japan from ambient noise tomography[J]. J. Geophys. Res. Solid Earth,2011,116:B12312 doi: 10.1029/2011JB008637 [68] Tanimoto T,Ishimaru S,Alvizuri C. Seasonality in particle motion of microseisms[J]. Geophys. J. Int.,2006,166(1):253-266 doi: 10.1111/j.1365-246X.2006.02931.x [69] Koper K D,Seats K,Benz H. On the composition of earth’s short-period seismic noise field[J]. Bull. Seismol. Soc. Amer.,2010,100(2):606-617 doi: 10.1785/0120090120 [70] Takagi R,Nakahara H,Kono T,et al. Separating body and Rayleigh waves with cross terms of the cross-correlation tensor of ambient noise[J]. J. Geophys. Res. Solid Earth,2014,119(3):2005-2018 doi: 10.1002/2013JB010824 [71] Lin F C,Tsai V C,Schmandt B,et al. Extracting seismic core phases with array interferometry[J]. Geophys. Res. Lett.,2013,40(6):1049-1053 doi: 10.1002/grl.50237 [72] Ruigrok E,Wapenaar K. Global-phase seismic interferometry unveils P-wave reflectivity below the Himalayas and Tibet[J]. Geophys. Res. Lett.,2012,39:L11303 [73] Xu Z,Juhlin C,Gudmundsson O,et al. Reconstruction of subsurface structure from ambient seismic noise:An example from Ketzin,Germany[J]. Geophys. J. Int.,2012,189(2):1085-1102 doi: 10.1111/j.1365-246X.2012.05411.x [74] Nakata N,Chang J P,Lawrence J F,et al. Body wave extraction and tomography at Long Beach,California,with ambient-noise interferometry[J]. J. Geophys. Res. Solid Earth,2015,120(2):1159-1173 doi: 10.1002/2015JB011870 [75] Gimbert F,Tsai V C,Lamb M P. A physical model for seismic noise generation by turbulent flow in rivers[J]. J. Geophys. Res. Earth Surface,2014,119(10):2209-2238 doi: 10.1002/2014JF003201 [76] Gimbert F,Tsai V C. Predicting short-period,wind-wave-generated seismic noise in coastal regions[J]. Earth Planet. Sci. Lett.,2015,426:280-292 doi: 10.1016/j.jpgl.2015.06.017 [77] Poppeliers C,Mallinson D. High-frequency seismic noise generated from breaking shallow water ocean waves and the link to time-variable sea states[J]. Geophys. Res. Lett.,2015,42(20):8563-8569 doi: 10.1002/2015GL066126 [78] Xu Y,Koper K D,Burlacu R. Lakes as a source of short-period (0.5—2 s) microseisms[J]. J. Geophys. Res. Solid Earth,2017,122(10):8241-8256 doi: 10.1002/2017JB014808 [79] Nakata N,Tsuji T,Matsuoka T. Acceleration of computation speed for elastic wave simulation using a Graphic Processing Unit[J]. Exploration Geophysics,2011,42(1):98-104 doi: 10.1071/EG10039 [80] Bostock M G. Anisotropic upper-mantle stratigraphy and architecture of the Slave craton[J]. Nature,1997,390(6658):392-395 doi: 10.1038/37102 [81] Campillo M,Paul A. Long-range correlations in the diffuse seismic coda[J]. Science,2003,299(5606):547-549 doi: 10.1126/science.1078551 [82] Poli P,Pedersen H A,Campillo M,et al. Emergence of body waves from cross-correlation of short period seismic noise[J]. Geophys. J. Int.,2012,188(2):549-558 doi: 10.1111/j.1365-246X.2011.05271.x [83] Ni J, Grand S. Collaborative research: Northeast China extended seismic array: Deep subduction, mantle dynamics and lithospheric evolution beneath Northeast China[R/OL]. International Federation of Digital Seismograph Networks, 2009. https://doi.org/10.7914/SN/YP_2009 [84] van Wijk K,Mikesell T D,Schulte-Pelkum V,et al. Estimating the Rayleigh-wave impulse response between seismic stations with the cross terms of the Green tensor[J]. Geophys. Res. Lett.,2011,38:L16301 [85] Haney M M,Mikesell T D,van Wijk K,et al. Extension of the spatial autocorrelation (SPAC) method to mixed-component correlations of surface waves[J]. Geophys. J. Int.,2012,191(1):189-206 doi: 10.1111/j.1365-246X.2012.05597.x [86] Nishida K,Montagner J P,Kawakatsu H. Global surface wave tomography using seismic hum[J]. Science,2009,326(5949):112 doi: 10.1126/science.1176389 [87] Boué P,Poli P,Campillo M,et al. Reverberations,coda waves and ambient noise:Correlations at the global scale and retrieval of the deep phases[J]. Earth Planet. Sci. Lett.,2014,391:137-145 doi: 10.1016/j.jpgl.2014.01.047 [88] Poli P,Thomas C,Campillo M,et al. Imaging the D'' reflector with noise correlations[J]. Geophys. Res. Lett.,2015,42(1):60-65 doi: 10.1002/2014GL062198 [89] Nishida K,Takagi R. Teleseismic S wave microseisms[J]. Science,2016,353(6302):919-921 doi: 10.1126/science.aaf7573 [90] Wang T,Song X D,Xia H H. Equatorial anisotropy in the inner part of Earth’s inner core from autocorrelation of earthquake coda[J]. Nat. Geosci.,2015,8(3):224-227 doi: 10.1038/ngeo2354 [91] Huang H H,Lin F C,Tsai V C,et al. High-resolution probing of inner core structure with seismic interferometry[J]. Geophys. Res. Lett.,2015,42(24):10622-10630 [92] Ito Y,Shiomi K. Seismic scatterers within subducting slab revealed from ambient noise autocorrelation[J]. Geophys. Res. Lett.,2012,39:L19303 [93] Taylor G,Rost S,Houseman G. Crustal imaging across the North Anatolian Fault Zone from the autocorrelation of ambient seismic noise[J]. Geophys. Res. Lett.,2016,43(6):2502-2509 doi: 10.1002/2016GL067715 [94] Kennett B L N,Saygin E,Salmon M. Stacking autocorrelograms to map Moho depth with high spatial resolution in southeastern Australia[J]. Geophys. Res. Lett.,2015,42(18):7490-7497 doi: 10.1002/2015GL065345 [95] Kennett B L N. Lithosphere-asthenosphere P-wave reflectivity across Australia[J]. Earth Planet. Sci. Lett.,2015,431:225-235 doi: 10.1016/j.jpgl.2015.09.039 [96] Saygin E,Cummins P R,Lumley D. Retrieval of the P wave reflectivity response from autocorrelation of seismic noise:Jakarta Basin,Indonesia[J]. Geophys. Res. Lett.,2017,44(2):792-799 doi: 10.1002/2016GL071363 [97] Becker G,Knapmeyer-Endrun B. Crustal thickness across the Trans-European Suture Zone from ambient noise autocorrelations[J]. Geophys. J. Int.,2018,212(2):1237-1254 doi: 10.1093/gji/ggx485 [98] Romero P,Schimmel M. Mapping the basement of the Ebro Basin in Spain with seismic ambient noise autocorrelations[J]. J. Geophys. Res. Solid Earth,2018,123(6):5052-5067 doi: 10.1029/2018JB015498 [99] Aki K. Analysis of the seismic coda of local earthquakes as scattered waves[J]. J. Geophys. Res.,1969,74(2):615-631 doi: 10.1029/JB074i002p00615 [100] 肖卓,高原. 尾波干涉原理及其应用研究进展综述[J]. 地震学报,2015,37(3):516-526 doi: 10.11939/j.issn:0253-3782.2015.03.014Xiao Zhuo,Gao Yuan. A review on the theory of coda wava interferometry and its research progress[J]. Acta Seismologica Sinica,2015,37(3):516-526 doi: 10.11939/j.issn:0253-3782.2015.03.014 [101] Abe S,Kurashimo E,Sato H,et al. Interferometric seismic imaging of crustal structure using scattered teleseismic waves[J]. Geophys. Res. Lett.,2007,34(19):350-361 [102] Sun W,Kennett B L N. Receiver structure from teleseisms:Autocorrelation and cross correlation[J]. Geophys. Res. Lett.,2016,43(12):6234-6242 doi: 10.1002/2016GL069564 [103] Pham T S,Tkalcic H. On the feasibility and use of teleseismic P wave coda autocorrelation for mapping shallow seismic discontinuities[J]. J. Geophys. Res. Solid Earth,2017,122(5):3776-3791 doi: 10.1002/2017JB013975 [104] Sun W,Kennett B L N. Mid-lithosphere discontinuities beneath the western and central North China Craton[J]. Geophys. Res. Lett.,2017,44(3):1302-1310 doi: 10.1002/2016GL071840 [105] Husebye E S, Ruud B O. Eight—Array seismology—past, present and future developments[M]//Litehiser J J. Observatory seismology: A centennial symposium for the Berkeley seismographic stations. Berkeley: University of California Press, 1989 [106] Rost S,Thomas C. Array seismology:Methods and applications[J]. Rev. Geophys.,2002,40(3):2-1-2-27 [107] Rost S,Thomas C. Improving seismic resolution through array processing techniques[J]. Surveys in Geophysics,2009,30(4-5):271-299 doi: 10.1007/s10712-009-9070-6 [108] Rothert E,Ritter J R R. Small-scale heterogeneities below the Grafenberg array,Germany from seismic wavefield fluctuations of Hindu Kush events[J]. Geophys. J. Int.,2000,140(1):175-184 doi: 10.1046/j.1365-246x.2000.00013.x [109] Boue P,Roux P,Campillo M,et al. Double beamforming processing in a seismic prospecting context[J]. Geophysics,2013,78(3):V101-V108 doi: 10.1190/geo2012-0364.1 [110] Kruger F,Weber M,Scherbaum F,et al. Double-beam analysis of anomalies in the coremantle boundary region[J]. Geophys. Res. Lett.,1993,20(14):1475-1478 doi: 10.1029/93GL01311 [111] Thorson J R,Claerbout J F. Velocity-stack and slant-stack stochastic inversion[J]. Geophysics,1985,50(12):2727-2741 doi: 10.1190/1.1441893 [112] Kruger F,Scherbaum F,Weber M,et al. Analysis of asymmetric multipathing with a generalization of the double-beam method[J]. Bull. Seismol. Soc. Amer.,1996,86(3):737-749 [113] Scherbaum F,Kruger F,Weber M. Double beam imaging:Mapping lower mantle heterogeneities using combinations of source and receiver arrays[J]. J. Geophys. Res. Solid Earth,1997,102(B1):507-522 doi: 10.1029/96JB03115 [114] Castellanos J C,Clayton R W,Juarez A. Using a time-based subarray method to extract and invert noise-derived body waves at long beach,California[J]. J. Geophys. Res. Solid Earth,2020,125(5):e2019JB018855 [115] Nakata N,Boue P,Brenguier F,et al. Body and surface wave reconstruction from seismic noise correlations between arrays at Piton de la Fournaise volcano[J]. Geophys. Res. Lett.,2016,43(3):1047-1054 doi: 10.1002/2015GL066997 [116] Yilmaz O. Seismic data analysis[M]. Tulsa: Society of exploration geophysicists, 2001 [117] Schimmel M,Paulssen H. Noise reduction and detection of weak,coherent signals through phase-weighted stacks[J]. Geophys. J. Int.,1997,130(2):497-505 doi: 10.1111/j.1365-246X.1997.tb05664.x [118] Feng J K,Yao H J,Poli P,et al. Depth variations of 410 km and 660 km discontinuities in eastern North China Craton revealed by ambient noise interferometry[J]. Geophys. Res. Lett.,2017,44(16):8328-8335 doi: 10.1002/2017GL074263 -