zhenbo

ISSN 2096-7780 CN 10-1665/P

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天然地震与人工爆破特征识别研究综述

唐婷婷 余思 陈江贻

唐婷婷, 余思, 陈江贻. 天然地震与人工爆破特征识别研究综述[J]. 地震科学进展, 2021, (9): 385-394. doi: 10.3969/j.issn.2096-7780.2021.09.001
引用本文: 唐婷婷, 余思, 陈江贻. 天然地震与人工爆破特征识别研究综述[J]. 地震科学进展, 2021, (9): 385-394. doi: 10.3969/j.issn.2096-7780.2021.09.001
Tang Tingting, Yu Si, Chen Jiangyi. Identification of characteristics of earthquake and explosion: A research review[J]. Progress in Earthquake Sciences, 2021, (9): 385-394. doi: 10.3969/j.issn.2096-7780.2021.09.001
Citation: Tang Tingting, Yu Si, Chen Jiangyi. Identification of characteristics of earthquake and explosion: A research review[J]. Progress in Earthquake Sciences, 2021, (9): 385-394. doi: 10.3969/j.issn.2096-7780.2021.09.001

天然地震与人工爆破特征识别研究综述

doi: 10.3969/j.issn.2096-7780.2021.09.001
详细信息
    通讯作者:

    唐婷婷(1990-),女,工程师,主要从事地震监测研究。E-mail:tang_5168@163.com

  • 中图分类号: P315

Identification of characteristics of earthquake and explosion: A research review

  • 摘要: 近年来,天然地震与人工爆破特征识别作为地震事件分类识别的关键技术之一,随受关注度的不断提升获得了长足的发展。文中针对该研究方向出现的识别特征和特征提取方法进行了整体综述,以期为进一步深入研究天然地震与人工爆破特征识别以及拓展其应用领域奠定一定的基础。

     

  • 图  1  地震事件识别的主要步骤

    Figure  1.  The main procedures of earthquake identification

    图  2  倒谱计算过程

    Figure  2.  Cepstral calculating process

    图  3  希尔伯特-黄变换流程图

    Figure  3.  The flow chart of Hilbert-Huang transform (HHT)

    图  4  卷积神经网络结构示意图

    Figure  4.  The structure diagram of convolutional neural network

    表  1  天然地震与人工爆破常用识别特征

    Table  1.   The common characteristics for earthquake and explosion identification

    特征参数具体特征数据处理方法人工爆破天然地震优点缺点参考文献







    发震时间、地点规律①时间一般通常具有规律性;
    ②部分人工爆破地点固定,如采石场
    发震时间、
    地点随机
    直观明了适用范围局限于爆破时间、地点固定地区[9-11]
    短周期面波
    (瑞利型Rg波)
    在S波之后往往有较大周期的瑞利面波,呈正弦波状态的波瑞利面波不发育直观明了①近场爆破产生的面波不是完全的瑞利波
    ②辅助判据,无法定量
    [12-13]
     水
     平
     分
     量
     振
     幅
     比
    P波初动振幅和S波最大振幅比(Pc/Sm为了减弱震源大小、传播路径、台站方位角以及震中距的影响,P波与S波幅值比一般采用经过震中距衰减校正后的各台记录的算术平均值
    ${{\rm{P}}{\text{波与} }{\rm{S}}{\text{波幅值比} }=}$

    ${\dfrac{ { \sum {\text{衰减校正后的各台记录的幅值比} } } }{\text{台数} }}$



    Pc/Sm:人工爆破>天然地震
    Pm/Sm:人工爆破>天然地震
    可根据样本数据计算得到最优阈值


    减小震级、地震仪的放大倍数、频率特性影响
    ①主要利用相应波段上孤立点的测量信息,具有一定的局限性
    ②需要通过克里金方法进行路径校正,减弱传播路径差异影响
    [14-20]
    P波最大振幅和S波最大振幅比(Pm/Sm
    P波初动方向P波初动判据准则:
    ①${\dfrac{ { {\text{初动向上} } } }{ { {\text{清晰初动} } } } }$≥80%,
    记为1,偏向爆破;
    ②${\dfrac{ { {\text{初动向下} } } }{ { {\text{清晰初动} } } } }$≥50%,
    记为−1,偏向地震;
    ③处于中间的记为0,无法通过初动判断事件类型




    近台(≤100 km)P波垂直分量初动方向向上



    有象限分布,P 波垂直分量初动方向可能向上,也可能向下






    直观明了
    受震级、地球介质结构等因素影响,部分波形记录初动不清晰,部分人工爆破P波初动向下[18, 20]
    尾波持续时间(从最大S波振幅开始到接近噪声水平的时间段)每一事件各记录台站尾波持续时间的
    平均
    尾波持续时间短尾波持续时间长尾波持续时间量取直观方便只适用于天然地震与人工爆破震级相等的情况[11, 18]
    体波震级相同的天然地震与人工爆破:
       天然地震>人工爆破
    倒谱参数倒谱分析①倒谱图单调下降,无非零峰值
    ②倒谱参量C<1
    ①多峰值分布
    ②倒谱参量C>1
    使用全波例信号,对滤波带宽不敏感依赖合理有效的传播路径介质衰减模式[2-4, 21]





    拐角频率波谱分析方法体波震级相同的天然地震与人工爆破同类波相比:天然地震>人工爆破可根据样本数据计算得到最优阈值,定量分析与震级存在一定相关性,具有一定局限性[22-23]
    最大振幅
    卓越周期
    波谱分析方法平均卓越周期约0.7 s平均卓越周期约0.3 s受震中距影响[22, 24]
    优势频率①短时傅里叶变换
    ②Hilbert-Huang变换
    ③非线性赵-阿特拉斯-马克斯(Zhao-Atlas-
    Marks)时频分析方法
    一般处于低频段,能量衰减快一般处于高频区,能量衰减慢[6-8, 25-28]
    顶峰频率平均值:天然地震>人工爆破
    能量比小波包变换人工爆破>天然地震小波变换选取基函数需要通过实验方法验证,工作量较大[18-19,
    29-30]
    P波瞬时频率非稳态WD理论瞬时频率平稳瞬时频率不稳定计算复杂[9, 31]
    瞬时频率复杂度公式
    $IFC={ \sum\limits _{ {i}=\text{1} }^{ {n} }({ {\displaystyle {g} } }_{{i}+\text{1} } }-{ {g} }_{{i} }{)}^{\text{2} }$
    $g_i $:瞬时频率曲线上各拐点的值
    天然地震>人工爆破
    Hilbert-Huang变换
    自相关系数三分向的自相关系数计算结果求和人工爆破>天然地震[32-35]
    波形复杂度C$C = \displaystyle\int\limits_A^B {X{ {(t)}^2} } {\text{d} }t/\displaystyle\int\limits_B^C {X{ {(t)}^2} } {\text{d} }t$
    Xt)为t时刻的波形幅值,分母取为从第A时刻到第B时刻的波形样本幅值和,分子取为从B时刻到第C时刻的波形样本幅值和
    人工爆破>天然地震[32,
    34-35]
    频谱比$SR = \dfrac{ {\displaystyle\int_{ {L_{\text{1} } } }^{ {H_1} } {\left| {x(f)} \right|{\rm{d}}f} } }{ {\displaystyle\int_{ {L_{\text{2} } } }^{ {H_2} } {\left| {x(f)} \right|{\rm{d}}f} } }$
    xf):傅里叶频谱中频率f处幅值的模;
    H1L1:低频段的上下限;
    H2L2:高频段的上下限
    天然地震>人工爆破受震源到台站间的射线传播路径和地球介质的非均匀性影响[32,
    34-35]
    下载: 导出CSV
  • [1] Bogert B P, Healy M J R, Tukey J W. The quefrency analysis of time serics for echoes: Cepstrum, pseudo-autocovariance, cross-cepstrum and saphe cracking[J]. Proceeding of the Symposium on Time, 1963, 15: 209-243
    [2] 魏富胜,黎明. 震源性质的倒谱分析[J]. 地震学报,2003,25(1):47-54 doi: 10.3321/j.issn:0253-3782.2003.01.006

    Wei Fusheng,Li Ming. Cepstrum anlysis of source character[J]. Acta Seismologica Sinica,2003,25(1):47-54 doi: 10.3321/j.issn:0253-3782.2003.01.006
    [3] 郭祥云,王淑辉,魏富胜. 小震级地震事件的倒谱差异[J]. 地震地磁观测与研究,2010,31(1):12-16 doi: 10.3969/j.issn.1003-3246.2010.01.003

    Guo Xiangyun,Wang Shuhui,Wei Fusheng. Difference cepstrum of smaller magtutide earthquake[J]. Seismological and Geomagnetic Observation and Research,2010,31(1):12-16 doi: 10.3969/j.issn.1003-3246.2010.01.003
    [4] 陈银燕. 基于HMM和GMM天然地震与人工爆破识别算法研究[D]. 桂林: 广西师范大学, 2011

    Chen Yinyan. A research on algorithms for discriminating earthquake and explosion based upon HMM and GMM[D]. Guilin: Guangxi Normal University, 2011
    [5] Gabor D. Theory of communication[J]. J. Inst. Electr. Eng.,1946,93:429-457
    [6] 崔鑫,许力生,许忠淮,等. 小地震与人工爆破记录的时频分析[J]. 地震工程学报,2016,38(1):71-78 doi: 10.3969/j.issn.1000-0844.2016.01.0071

    Cui Xin,Xu Lisheng,Xu Zhonghuai,et al. Time-frequency analysis of records of small earthquakes and explosions[J]. China Earthquake Engineering Journal,2016,38(1):71-78 doi: 10.3969/j.issn.1000-0844.2016.01.0071
    [7] 荣伟健,赵建明,董祎玮,等. 曹妃甸地震台网天然地震与人工爆破时频分析[J]. 地震地磁观测与研究,2017,38(5):39-43 doi: 10.3969/j.issn.1003-3246.2017.05.007

    Rong Weijian,Zhao Jianming,Dong Yiwei,et al. Time frequency analysis of earthquakes and explosions recorded by Caofeidian seismic network[J]. Seismological and Geomagnetic Observation and Research,2017,38(5):39-43 doi: 10.3969/j.issn.1003-3246.2017.05.007
    [8] 高家乙,刘晓峰,闫睿. 河南平顶山平煤矿区天然地震、爆破、塌陷时频特征分析[J]. 地震地磁观测与研究,2020,41(3):67-74

    Gao Jiayi,Liu Xiaofeng,Yan Rui. Time-frequency analysis of seismic records generated by natural earthquakes,blasts,and collapses near Pingmei mine based on STFT[J]. Seismological and Geomagnetic Observation and Research,2020,41(3):67-74
    [9] 张博. 爆炸和地震的识别研究[D]. 北京: 中国地震局地球物理研究所, 2013

    Zhang Bo. Research on earthquakes and explosions identification[D]. Beijing: Institute of Geophysics, China Earthquake Administration, 2013
    [10] 杨芳,朱嘉健,刘智,等. 广东地区地震与爆破事件识别方法研究[J]. 华南地震,2016,36(3):110-I15

    Yang Fang,Zhu Jiajian,Liu Zhi,et al. Study on identification methods between earthquakes and explosions occurred in Guangdong region[J]. South China Journal of Seismology,2016,36(3):110-I15
    [11] 王惠琳,李志雄,徐晓枫,等. 琼北确定性人工爆破与天然地震识别判据[J]. 地震地磁观测与研究,2017,38(4):75-80

    Wang Huilin,Li Zhixiong,Xu Xiaofeng,et al. Discrimination criterions of doubtless explosions and earthquakes in northern Hainan area[J]. Seismological and Geomagnetic Observation and Research,2017,38(4):75-80
    [12] 库尔哈奈克. 地震图解析[M]. 刘启元, 吴宁远, 修济刚, 译. 北京: 地震出版社, 1992

    Kulhanek Ota. Anatomy of Seismograms[M]. Translated by Liu Qiyuan, Wu Ningyuan, Xiu Jigang. Beijing: Seismological Press, 1992
    [13] 包宝小,贾宝金,刘芳,等. 乌兰浩特地震台典型地震事件震相特征分析[J]. 地震地磁观测与研究,2020,41(1):33-39 doi: 10.3969/j.issn.1003-3246.2020.01.006

    Bao Baoxiao,Jia Baojin,Liu Fang,et al. Analysis of seismic characteristics of Wulanhot seismic event[J]. Seismological and Geomagnetic Observation and Research,2020,41(1):33-39 doi: 10.3969/j.issn.1003-3246.2020.01.006
    [14] Pomeroy P W,Best W J,McEvilly T V. Test ban treaty verification with regional data:A review[J]. Bull. Seismol. Soc. Amer.,1982,72(6B):S89-S129 doi: 10.1785/BSSA07206B0089
    [15] 潘常周,靳平,王红春. P/S震相幅值比判据对低震级地震事件的适用性检验[J]. 地震学报,2007,29(5):521-528 doi: 10.3321/j.issn:0253-3782.2007.05.009

    Pan Changzhou,Jin Ping,Wang Hongchun. Applicability of P/S amplitude ratios for the discrimination of low magnitude seismic events[J]. Acta Seismologica Sinica,2007,29(5):521-528 doi: 10.3321/j.issn:0253-3782.2007.05.009
    [16] 潘常周,靳平,肖卫国. 利用克里金技术标定新疆及附近地区P/S震相幅值比及其在地震事件识别中的应用[J]. 地震学报,2007,29(6):625-634 doi: 10.3321/j.issn:0253-3782.2007.06.007

    Pan Changzhou,Jin Ping,XiaoWeiguo. Calibration of P/S amplitude ratios for seismic events in Xinjiang and adjacent areas based on a bayesian kriging method[J]. Acta Seismologica Sinica,2007,29(6):625-634 doi: 10.3321/j.issn:0253-3782.2007.06.007
    [17] 边银菊,黄汉明,郭永霞. 明灯一号及邻近地区地震与爆炸的识别[J]. 地震地磁观测与研究,2010,31(5):49-55 doi: 10.3969/j.issn.1003-3246.2010.05.009

    Bian Yinju,HuangHanming,GuoYongxia. Identification of earthquakes and explosions in Bright Lamp No. 1 and its nearby area[J]. Seismological and Geomagnetic Observation and Research,2010,31(5):49-55 doi: 10.3969/j.issn.1003-3246.2010.05.009
    [18] 王婷婷. 地震和爆破识别判据及识别方法研究[D]. 北京: 中国地震局地球物理研究所, 2012

    Wang Tingting. The recognized criteria and methods research on earthquakes and explosions identification[D]. Beijing: Institute of Geophysics, China Earthquake Administration, 2012
    [19] 蔡杏辉,张燕明,陈惠芳,等. 基于小波特征和神经网络的天然地震与人工爆破自动识别[J]. 大地测量与地球动力学,2020,40(6):634-639

    Cai Xinghui,Zhang Yanming,Chen Huifang,et al. Automatic identification of earthquake and explosion based on wavelet transform and neural network[J]. Journal of Geodesy and Geodynamics,2020,40(6):634-639
    [20] 马丽. 青海东部地区非天然地震识别与波形特征分析[J]. 高原地震,2020,32(4):40-46 doi: 10.3969/j.issn.1005-586X.2020.04.007

    Ma Li. Identification and waveform analysis of non-natural earthquakes in eastern Qinghai Province[J]. Plateau Earthquake Research,2020,32(4):40-46 doi: 10.3969/j.issn.1005-586X.2020.04.007
    [21] Baumgardt D R,Ziegler K A. Spectral evidence for source multiplicity in explosions:Application to regional discrimination of earthquakes and explosions[J]. Bull. Seismol. Soc. Amer.,1988,78(5):1773-1795
    [22] 郑秀芬,傅瑀,许绍燮. 地震记录中小爆破的识别与判据研究[J]. 地震地磁观测与研究,2006,27(5):29-33 doi: 10.3969/j.issn.1003-3246.2006.05.006

    Zheng Xiufen,Fu Yu,Xu Shaoxie. The discrimination and criteria study between blasts and small earthquakes[J]. Seismological and Geomagnetic Observation and Research,2006,27(5):29-33 doi: 10.3969/j.issn.1003-3246.2006.05.006
    [23] 张萍,魏富胜,潘科,等. 爆破与地震的拐角频率比较[J]. 地震地磁观测与研究,2009,30(5):20-25

    Zhang Ping,Wei Fusheng,Pan Ke,et al. Comparison of corner frequency between explosion and earthquake[J]. Seismological and Geomagnetic Observation and Research,2009,30(5):20-25
    [24] 李发,张佑龙,汪贵章,等. 安徽及周边地区小爆破的识别与判据研究[J]. 华北地震科学,2012,30(2):43-47 doi: 10.3969/j.issn.1003-1375.2012.02.009

    Li Fa,Zhang Youlong,Wang Guizhang,et al. Research on Identification of small explosions in Anhui and its surrounding area[J]. North China Earthquake Sciences,2012,30(2):43-47 doi: 10.3969/j.issn.1003-1375.2012.02.009
    [25] 张帆. 地震波时频谱分析及其在爆破识别中的应用[D]. 合肥: 中国科学技术大学, 2006

    Zhang Fan. Seismic signal time-frequency analysis and its application to blast distinguishing[J]. Hefei: University of Science and Technology of China, 2006
    [26] 张丽芬,廖武林,曾夏生,等. 三峡重点监视区构造地震与矿震时频分析谱特征分析[J]. 地震地质,2009,31(4):699-706 doi: 10.3969/j.issn.0253-4967.2009.04.013

    Zhang Lifen,Liao Wulin,Zeng Xiasheng,et al. Analysis of time-frequency characteristics of wave spectrum between tectonic earthquake and mine earthquake[J]. Seismology and Geology,2009,31(4):699-706 doi: 10.3969/j.issn.0253-4967.2009.04.013
    [27] 王玥琪. 不同类型事件宽频带地震仪记录的频谱特征研究[D]. 兰州: 中国地震局兰州地震研究所, 2015

    Wang Yueqi. Study on frequency spectrum characteristics of different type events record by broadband seismograph[D]. Lanzhou: Lanzhou Institute of Seismology, China Earthquake Administration, 2015
    [28] 陈晓龙,陈继锋,蒲举,等. 兰州市红古区非天然地震记录特征分析[J]. 地震工程学报,2021,43(3):545-550 doi: 10.3969/j.issn.1000-0844.2021.03.545

    Chen Xiaolong,Chen Jifeng,Pu Ju,et al. Characteristics of non-natural earthquake records in Honggu district,Lanzhou[J]. China Earthquake Engineering Journal,2021,43(3):545-550 doi: 10.3969/j.issn.1000-0844.2021.03.545
    [29] 曾宪伟,赵卫明,盛菊琴,等. 应用小波包识别宁夏及邻区的地震和爆破[J]. 地震研究,2008,31(2):142-148 doi: 10.3969/j.issn.1000-0666.2008.02.009

    Zeng Xianwei,Zhao Weiming,Sheng Juqin,et al. Using wavelet packet to discriminate earthquakes and explosions in Ningxia and Neighboring areas[J]. Journal of Seismological Research,2008,31(2):142-148 doi: 10.3969/j.issn.1000-0666.2008.02.009
    [30] 李锐. 天然地震与人工爆破的特征提取及识别算法研究[D]. 桂林: 广西师范大学, 2010

    Li Rui. Research of features extraction and recognition algorithm of earthquake and explosion[D]. Guilin: Guangxi Normal University, 2010
    [31] 薛思敏. 地震波形希尔伯特-黄变换特征提取与震源类型识别研究[D]. 桂林: 广西师范大学, 2020

    Xue Simin. Research on seismic wave’s hilbert-huang transform feature extraction and seismic event source type discrimination[D]. Guilin: Guangxi Normal University, 2020
    [32] 邱宏茂,刘俊民,范万春. 基于BP神经网络的地震信号识别分类[J]. 计算机应用与软件,2005,22(7):74-76 doi: 10.3969/j.issn.1000-386X.2005.07.032

    Qiu Hongmao,Liu Junmin,Fan Wanchun. Discrimination and classification of seismic signals based on BP neural network[J]. Computer Applications and Software,2005,22(7):74-76 doi: 10.3969/j.issn.1000-386X.2005.07.032
    [33] Kuyuk H S,Motosaka M. Real-time ground motion forecasting using front-site waveform data based on Artifical neural network[J]. Journal of Disaster Research,2009,4(4):260-266
    [34] 赵静. 天然地震与人工爆破波形特征提取与识别算法研究[D]. 桂林: 广西师范大学, 2011

    Zhao Jing. Research of seismic wave feature extraction and recognition algorithm of earthquake and explosion[D]. Guilin: Guangxi Normal University, 2011
    [35] 任涛,林梦楠,陈宏峰,等. 基于Bagging集成学习算法的地震事件性质识别分类[J]. 地球物理学报,2019,62(1):383-392 doi: 10.6038/cjg2019M0380

    Ren Tao,Lin Mengnan,Chen Hongfeng,et al. Seismic event classification based on bagging ensemble learning algorithm[J]. Chinese Journal of Geophysics,2019,62(1):383-392 doi: 10.6038/cjg2019M0380
    [36] 刘希强,沈萍,张玲,等. 用小波变换能量线度方法识别天然地震与爆破或塌方[J]. 西北地震学报,2003,25(3):204-209

    Liu Xiqiang,Shen Ping,Zhang Ling,et al. Using method of energy linearity in wavelet transform to distinguish explosion or collapse from nature earthquake[J]. Northwestern Seismological Journal,2003,25(3):204-209
    [37] 和雪松,李世愚,沈萍,等. 用小波包识别地震和矿震[J]. 中国地震,2006,22(3):425-434

    He Xuesong,Li Shiyu,Shen Ping,et al. A wavelet packet approach to wave classification of earthquakes and mining shocks[J]. Earthquake Research in China,2006,22(3):425-434
    [38] 黄明汉,边银菊,卢世军,等. v-SVC算法在地震与爆破识别及窗长度选取中的应用[J]. 地震地磁观测与研究,2010,31(3):24-31 doi: 10.3969/j.issn.1003-3246.2010.03.005

    Huang Minghan,Bian Yinju,Lu Shijun,et al. v-SVC algorithm applied in earthquake and explosion recognition and the choice of window length[J]. Seismological and Geomagnetic Observation and Research,2010,31(3):24-31 doi: 10.3969/j.issn.1003-3246.2010.03.005
    [39] Huang N E,Shen Z,Long S R,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc. R. Soc. Lond.,1998,454:903-995 doi: 10.1098/rspa.1998.0193
    [40] 陈奇. 时间窗法提取地震波形特征的算法研究[D]. 桂林: 广西师范大学, 2018

    Chen Qi. A research on algorithms for seismic wave feature extraction by the time window method[D]. Guilin: Guangxi Normal University, 2018
    [41] Perol T,Gharbi M,Denolle M. Convolutional neural network for earthquake detection and location[J]. Science Advances,2018,4(2):e1700578
    [42] 陈润航,黄明汉,柴慧敏. 地震和爆破事件源波形信号的卷积神经网络分类研究[J]. 地球物理学进展,2018,33(4):1331-1338 doi: 10.6038/pg2018BB0326

    Chen Runhang,Huang Minghan,Chai Huimin. Study on the discrimination of seismic waveform signals between earthquake and explosion events by convolutional neural network[J]. Progress in Geophysics,2018,33(4):1331-1338 doi: 10.6038/pg2018BB0326
    [43] 周少辉,蒋海昆,李健,等. 基于深度学习的地震事件分类识别−以山东地震台网记录为例[J]. 地震地质,2021,43(3):663-676 doi: 10.3969/j.issn.0253-4967.2021.03.012

    Zhou Shaohui,Jiang Haikun,Li Jian,et al. Research on identification of seismic events based on deep learning:Taking the records of Shandong seismic network as an example[J]. Seismology and Geology,2021,43(3):663-676 doi: 10.3969/j.issn.0253-4967.2021.03.012
    [44] 隗永刚,杨千里,王婷婷,等. 基于深度学习残差网络模型的地震和爆破识别[J]. 地震学报,2019,41(5):646-657 doi: 10.11939/jass.20190030

    Wei Yonggang,Yang Qianli,Wang Tingting,et al. Earthquake and explosion identification based on deep learning residual network mode[J]. Acta Seismologica Sinica,2019,41(5):646-657 doi: 10.11939/jass.20190030
    [45] Mousavi S M,Ellsworth W L,Zhu W Q,et al. Earthquake transformer— an attentive deep-learning model for simultaneous earthquake detection and phase picking[J]. Nature Communications,2020,11(1):3952 doi: 10.1038/s41467-020-17591-w
    [46] 高中强. 基于深度学习的震源类型识别方法[D]. 河南: 信阳师范学院, 2020

    Gao Zhongqiang. Research on source type identification methods based on deep learning[D]. Henan: Xinyang Normal University, 2020
    [47] 李进. 基于深度神经网络模型的地震信号识别研究[D]. 石家庄: 河北地质大学, 2021

    Li Jin. Seismic signal recognition based on deep neural network model[D]. Shijiazhuang: Hebei GEO University, 2021
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  269
  • HTML全文浏览量:  151
  • PDF下载量:  63
出版历程
  • 收稿日期:  2021-07-08
  • 修回日期:  2021-08-12

目录

    /

    返回文章
    返回
    本系统由北京仁和汇智信息技术有限公司设计开发 百度统计