Comparative analysis of static strength characteristics of two kinds of silty clay
-
摘要: 以南京与无锡的两种粉质黏土为研究对象,通过使用TSZ-2全自动三轴仪对这两种土在饱和以及非饱和状态下的静强度进行测定。对比分析两种土在饱和状态下,其原状样与扰动样之间抗剪强度的差异,以及两种土在非饱和状态下不同的初始含水率对其抗剪强度产生的影响。得出无锡土样较南京土样具有含水率低、密度高、孔隙比小、压缩性低、静强度高的特点,但扰动作用对无锡饱和土造成的影响较大,而南京土样受扰动作用影响小。确定非饱和粘性土的抗剪强度与含水率以及颗粒级配存在关联,从而导致两种土非饱和状态的抗剪强度存在差异。Abstract: Taking two types of silty clays from Nanjing and Wuxi as the research object, the static strength of these two kinds of soil in saturated and unsaturated states was measured using the TSZ-2 automatic triaxial instrument. The difference in shear strength between the original and disturbed samples of the soil in the saturated state, and the influence of the initial water content of the soil in the unsaturated state on the shear strength are studied. The comparison of test results shows that Wuxi soil has the characteristics of smaller water content, higher density, smaller void ratio, smaller compressibility, and higher static strength than Nanjing soil. However, the disturbance effect has a greater impact on Wuxi saturated soil compared to Nanjing soil. The shear strength of unsaturated cohesive soil is related to the particle gradation, resulting in a difference in the shear strength of the two types of soil.
-
Key words:
- static triaxial test /
- saturated soil /
- unsaturated soil /
- shear strength
-
表 1 两种粉质黏土基本物理指标
Table 1. Basic physical indexes of two kinds of silty clay
地区 深度范围/m 土粒相对密度 密度/kg•cm−3 含水率 孔隙比e 塑限 液限 塑性指数Ip 南京 10—14 2.62 1.91 26% 0.547 23.4% 38.2% 14.8 无锡 7—12 2.456 2.05 19% 0.441 24.9% 41.3% 16.4 表 2 固结不排水抗剪强度指标
Table 2. Consolidated undrained shear strength index
抗剪强度指标 c/kPa φ/° 无锡原状土样 16.69 2.18 无锡重塑土样 9.46 1.74 南京原状土样 9.18 1.22 南京重塑土样 8.42 0.86 -
[1] 黄博,史海栋,凌道盛,等. 两种粉质黏土的动、静强度特性对比研究[J]. 岩土力学,2012,33(3):665-673 doi: 10.3969/j.issn.1000-7598.2012.03.004Huang Bo,Shi Haidong,Ling Daosheng,et al. Comparisons of static and dynamic behaviors between two silty clays by test[J]. Rock and Soil Mechanics,2012,33(3):665-673 doi: 10.3969/j.issn.1000-7598.2012.03.004 [2] 张英, 邴慧, 杨成松. 基于SEM和MIP的冻融循环对粉质黏土强度影响机制研究[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3597-3603Zhang Ying, Bing Hui, Yang Chengsong. Influences of freeze-thaw cycles on mechanical properties of silty clay based on SEM and MIP test[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3597-3603 [3] 牛亚强,赖远明,王旭,等. 初始含水率对冻结粉质黏土变形和强度的影响规律研究[J]. 岩土力学,2016,37(2):499-506Niu Yaqiang,Lai Yuanming,Wang Xu,et al. Research on influences of initial water content on deformation and strength behaviors of frozen silty clay[J]. Rock and Soil Mechanics,2016,37(2):499-506 [4] 陈嘉伟,高游,付俊杰,等. 不同类型黏土的强度特性及其预测[J]. 水文地质工程地质,2020,47(3):101-106Chen Jiawei,Gao You,Fu Junjie,et al. Strength of different clayey soils and its prediction[J]. Hydrogeology & Engineering Geology,2020,47(3):101-106 [5] 唐建国. 无锡市区浅层地基土工程地质条件及其评价[J]. 地质学刊,1990(4):33-36Tang Jianguo. Engineering geological condition and evaluation of shallow ground soil in Wuxi urban district[J]. Journal of Geology,1990(4):33-36 [6] 孙健,吴良芳,杨献忠. 南京浦口地区工程地质分区及其评价[J]. 地质学刊,2006(3):226-230Sun Jian,Wu Liangfang,Yang Xianzhong. Engineering geological zoning and evaluation of Pukou area,Nanjing[J]. Journal of Geology,2006(3):226-230 [7] 中华人民共和国水利部. GB/T 50123—1999土工试验方法标准[S]. 北京: 中国计划出版社, 1999Ministry of Water Resources of the People’s Republic of China. GB/T 50123—1999 Standard for soil test method[S]. Beijing: China Planning Press, 1999 [8] 中华人民共和国建设部. GB 50007—2002建筑地基基础设计规范[S]. 北京: 中国建筑工业出版社, 2002Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB 50007—2002 Code for design building foundation[S]. Beijing: China Construction Industry Press, 2002 [9] 林鸿州,李广信,于玉贞,等. 基质吸力对非饱和土抗剪强度的影响[J]. 岩土力学,2007(9):1931-1936 doi: 10.3969/j.issn.1000-7598.2007.09.031Lin Hongzhou,Li Guangxin,Yu Yuzhen,et al. Influence of matric suction on shear strength behavior of unsaturated soils[J]. Rock and Soil Mechanics,2007(9):1931-1936 doi: 10.3969/j.issn.1000-7598.2007.09.031 [10] 沈珠江. 广义吸力和非饱和土的统一变形理论[J]. 岩土工程学报,1996(2):1-9 doi: 10.3321/j.issn:1000-4548.1996.02.001Shen Zhujiang. Generalized suction and unified deformation theory for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering,1996(2):1-9 doi: 10.3321/j.issn:1000-4548.1996.02.001 [11] 王志健. 黏粒含量对非饱和土抗剪强度影响的试验研究[D]. 浙江: 浙江工业大学, 2015Wang Zhijian. Experimental study of the influence of clay content on mechanical properties of unsaturated soil[D]. Zhejiang: Zhejiang University of Technology, 2015 [12] 凌华,殷宗泽. 非饱和土强度随含水量的变化[J]. 岩石力学与工程学报,2007(7):1499-1503 doi: 10.3321/j.issn:1000-6915.2007.07.026Ling Hua,Yin Zongze. Variation of unsaturated soil strength with water contents[J]. Chinese Journal of Rock Mechanics and Engineering,2007(7):1499-1503 doi: 10.3321/j.issn:1000-6915.2007.07.026 [13] 汤连生. 从粒间吸力特性再认识非饱和土抗剪强度理论[J]. 岩土工程学报,2001(4):412-417 doi: 10.3321/j.issn:1000-4548.2001.04.006Tang Liansheng. New suggestion on shear strength in unsaturated soil basedon suction between grains[J]. Chinese Journal of Geotechnical Engineering,2001(4):412-417 doi: 10.3321/j.issn:1000-4548.2001.04.006 [14] Gan J,Fredlund D G,Rahardjo H. Determination of the shear strength parameters of an unsaturated soil using the direct shear test[J]. Canadian Geotechnical Journal,1988,25(3):500-510 doi: 10.1139/t88-055 -