Numerical simulation of dynamic characteristics of rectangular single leg thin-wall hollow piers with different pier heights
-
摘要: 首先介绍研究高低墩特性的目的及意义,并对国内外关于高低墩动静力特性的研究现状进行概述;然后借助有限元软件ABAQUS建立5种不同高度的桥墩模型,并对其分别进行模态分析,提取其自振频率以及振型,分析其自振特点,再沿两个方向分别输入3组不同的地震动,对比分析结构的位移和加速度响应。研究表明:对于同一阶模态,桥墩高度的减小会导致其自振频率呈现增大的趋势;桥墩高度的变化会对较高阶振型产生影响;桥墩高度的减小可以显著减小结构的位移和加速度响应;地震动输入的不同带来的结构的位移响应和加速度响应的差异十分显著。Abstract: Firstly, this paper introduces the purpose and significance of studying the characteristics of high and low piers, and summarizes the research status of dynamic and static characteristics of high and low piers at home and abroad. Then, five kinds of pier models with different heights are established with the aid of the finite element software ABAQUS. Modal analysis is carried out, the natural frequency and mode shape are extracted, the characteristics of natural vibration are analyzed, and three different groups of ground motions are input along the two directions respectively. The displacement and acceleration response of the structure are compared and analyzed. The results show that: for the same mode, with the decrease of pier height, the natural frequency will increase and the change of pier height affects the higher mode. The decrease of pier height can significantly reduce the displacement and acceleration response of the structure. The difference of displacement and acceleration response of the structure caused by different seismic input is significant.
-
Key words:
- high and low piers /
- finite element /
- model analysis /
- seismic response
-
表 1 模型自振特性
Table 1. Natural vibration characteristics of models
桥墩高度/m 阶数 自振频率/Hz 振型描述 50(模型1) 1 1.1596 短轴向弯曲 2 1.3956 长轴向弯曲 3 6.9838 短轴向弯曲 40(模型2) 1 1.7916 短轴向弯曲 2 2.1526 长轴向弯曲 3 10.575 短轴向弯曲 30(模型3) 1 3.1208 短轴向弯曲 2 3.7366 长轴向弯曲 3 17.252 扭转 20(模型4) 1 6.7055 短轴向弯曲 2 7.9595 长轴向弯曲 3 25.590 扭转 10(模型5) 1 22.733 短轴向弯曲 2 26.167 长轴向弯曲 3 49.484 扭转 表 2 大震作用下各方向最大位移
Table 2. Maximum displacements in all directions under large earthquake
墩高/m x轴向/m y轴向/m z轴向/m 50 0.245993 0.0198096 1.93251×10−7 40 0.127106 0.0126765 5.27659×10−7 30 0.0372008 0.00485963 6.22255×10−7 20 0.00610047 0.00114500 6.66610×10−7 10 0.000197071 6.25827×10-5 2.53129×10−7 表 7 小震作用下各方向加速度峰值
Table 7. Peak accelerations in all directions under small earthquake
墩高/m x轴向/(m•s−2) y轴向/(m•s−2) z轴向/(m•s−2) 50 2.45746 0.197897 1.50556×10−5 40 2.84309 0.283545 2.05689×10−5 30 2.86187 0.373854 4.92671×10−5 20 1.73704 0.326027 0.000189686 10 0.233978 0.074305 0.000293183 表 3 中震作用下各方向最大位移
Table 3. Maximum displacements in all directions under medium earthquake
墩高/m x轴向/m y轴向/m z轴向/m 50 0.117096 0.00942965 9.59064×10−8 40 0.0567156 0.00565636 2.36262×10−7 30 0.0212679 0.00277828 3.61263×10−7 20 0.00339777 0.00063773 3.71105×10−7 10 0.000111394 3.53747×10−5 1.43273×10−7 表 4 小震作用下各方向最大位移
Table 4. Maximum displacements in all directions under small earthquakes
墩高/m x轴向/m y轴向/m z轴向/m 50 0.0259048 0.00208609 2.10175×10−8 40 0.0145805 0.00145414 5.25103×10−8 30 0.00497006 0.000649252 8.29721×10−8 20 0.00083067 0.000155909 9.07419×10−8 10 2.94653×10-5 9.35711×10-6 3.78934×10−8 表 5 大震作用下各方向加速度峰值
Table 5. Peak accelerations in all directions under large earthquake
墩高/m x轴向/(m•s−2) y轴向/(m•s−2) z轴向/(m•s−2) 50 22.9641 1.84928 0.000114906 40 22.3992 2.23391 0.00011655 30 20.0698 2.62177 0.000330838 20 11.3311 2.12674 0.00123832 10 1.17531 0.373244 0.00147798 表 6 中震作用下各方向加速度峰值
Table 6. Peak accelerations in all directions under medium earthquake
墩高/m x轴向/(m•s−2) y轴向/(m•s−2) z轴向/(m•s−2) 50 9.82989 0.822526 5.11267×10−5 40 9.49928 0.947371 7.70077×10−5 30 10.3553 1.35273 0.000182799 20 5.39265 1.01215 0.000589022 10 0.612895 0.194638 0.000769107 表 8 大震作用下各方向最大位移
Table 8. Maximum displacements in all directions under large earthquake
墩高/m x轴向/m y轴向/m z轴向/m 50 2.60196×10−7 0.0191739 0.285033 40 6.21327×10−7 0.0155784 0.188319 30 4.51802×10−7 0.00686952 0.0625495 20 2.79449×10−7 0.00131568 0.00825973 10 2.35065×10−7 8.75803×10−5 0.00031328 表 13 小震作用下各方向加速度峰值
Table 13. Peak accelerations in all directions under small earthquake
墩高/m x轴向/(m•s−2) y轴向/(m•s−2) z轴向/(m•s−2) 50 4.48997×10−6 0.284816 2.52882 40 5.7515×10−5 0.290915 2.86703 30 0.000102156 0.349043 3.17817 20 5.8348×10−5 0.275841 1.73171 10 0.000339818 0.126271 0.451679 表 9 中震作用下各方向最大位移
Table 9. Maximum displacements in all directions under medium earthquake
墩高/m x轴向/m y轴向/m z轴向/m 50 1.18769×10−7 0.00878313 0.131267 40 3.44923×10−7 0.00720593 0.0854829 30 2.09077×10−7 0.00275501 0.0250854 20 1.40487×10−7 0.000659259 0.00413877 10 1.18005×10−7 4.40015×10−5 0.000157396 表 10 小震作用下各方向最大位移
Table 10. Maximum displacements in all directions under small earthquake
墩高/m x轴向/m y轴向/m z轴向/m 50 3.39434×10−8 0.00257869 0.0382815 40 7.60893×10−8 0.0018004 0.0215028 30 6.07219×10−8 0.000914187 0.00832402 20 3.78942×10−8 0.000178453 0.00112031 10 3.26441×10−8 1.21614×10−5 4.3502×10−5 表 11 大震作用下各方向加速度峰值
Table 11. Peak accelerations in all directions under large earthquake
墩高/m x轴向/(m•s−2) y轴向/(m•s−2) z轴向/(m•s−2) 50 3.78117×10−5 2.35375 21.4982 40 0.000339114 2.33977 26.1326 30 0.000509031 2.54321 23.157 20 0.000418928 2.00109 12.5627 10 0.00126616 0.469792 1.68046 表 12 中震作用下各方向加速度峰值
Table 12. Peak accelerations in all directions under medium earthquake
墩高/m x轴向/(m•s−2) y轴向/(m•s−2) z轴向/(m•s−2) 50 1.90666×10−5 1.21926 10.0978 40 0.00019786 1.25097 12.0298 30 0.00014413 1.30297 11.864 20 0.000189173 0.892207 5.6012 10 0.000794521 0.295218 1.05601 -
[1] 张顺民. 连续刚构高低墩桥受力和变形分析[J]. 南阳理工学院学报,2015,7(6):94-97Zhang Shunmin. The analysis of asymmetric bridge pier[J]. Journal of Nanyang Institute of Technology,2015,7(6):94-97 [2] 董宏伟,邢江. 单线铁路高低墩大跨连续刚构桥结构刚度分析[J]. 工程技术研究,2019,4(6):9-11Dong Hongwei,Xing Jiang. Structural stiffness analysis of long span continuous rigid frame bridge of single track railway with high and low piers[J]. Engineering and Technological Research,2019,4(6):9-11 [3] 朱静. 不对称连续刚构桥受力分析[D]. 辽宁: 大连理工大学, 2011Zhu Jing. Force analysis of asymmetric continuous rigid frame bridge[D]. Liaoning: Dalian University of Technology, 2011 [4] 姜楠,刘鹏. 近断层地震动对高低墩连续刚构桥受力影响分析[J]. 山西建筑,2017,43(8):174-175Jiang Nan,Liu Peng. Analysis on the force influence of near fault earthquake to high-low pier continuous rigid frame bridge[J]. Shanxi Architecture,2017,43(8):174-175 [5] 程志友,钱骥,陈鑫,等. 高低墩连续刚构桥的动力特性与抗震分析[J]. 铁道建筑,2018,58(7):18-21Cheng Zhiyou,Qian Ji,Chen Xin,et al. Dynamic characteristics and anti-seismic analysis of continuous rigid frame bridge with high and low piers[J]. Railway Engineering,2018,58(7):18-21 [6] 周伟. 不对称跨径连续刚构桥静力仿真计算及地震反应分析[D]. 湖南: 长沙理工大学, 2007Zhou Wei. The artificial calculation and seismic response analysis of asymmetric continuous rigid-frame bridge[D]. Hu’nan: Changsha University of Science & Technology, 2007 [7] 何伟,刘鹏. 近断层高低墩连续刚构桥抗震分析[J]. 工程抗震与加固改造,2018,40(1):72-75He Wei,Liu Peng. Seismic analysis of continuous rigid frame bridge with high-low piers in the near-fault area[J]. Earthquake Resistant Engineering and Retrofitting,2018,40(1):72-75 [8] 陈全. 高墩大跨连续刚构桥抗震影响因素研究[D]. 四川: 西南交通大学, 2013Chen Quan. The analysis of anti-seismic factors of high-pier long-span continuous rigid frame bridge[D]. Sichuan: Southwest Jiaotong University, 2013 [9] 王建忠. 非对称高墩连续刚构桥的地震反应分析与减震措施[D]. 重庆: 重庆大学, 2014Wang Jianzhong. Seismic response analysis and vibration reducing measures of the continuous girder bridge with asymmetrical high bridge piers[D]. Chongqing: Chongqing University, 2014 [10] 耿江玮,朱东生,向中富,等. 非规则连续梁桥非线性地震反应分析[J]. 重庆交通大学学报(自然科学版),2011,30(2):185-189,281Geng Jiangwei,Zhu Dongsheng,Xiang Zhongfu,et al. Nonlinear seismic response analysis of irregular continuous bridge[J]. Journal of Chongqing Jiaotong University (Natural Science),2011,30(2):185-189,281 [11] 李可欣. 高墩大跨连续刚构桥地震响应下的弹塑性分析[D]. 云南: 昆明理工大学, 2017Li Kexin. Elastic-plastic analysis of seismic response of high-pier and long-span continuous rigid frame bridge[D]. Yunnan: Kunming University of Science & Technology, 2017 [12] 周朋,黄才良,张哲,等. 不对称连续刚构桥动力特性分析[J]. 公路,2013,58(12):83-87Zhou Peng,Huang Cailiang,Zhang Zhe,et al. Analysis of dynamic behavior of unsymmetrical continuous rigid frame bridge[J]. Highway,2013,58(12):83-87 [13] 倪洪将. 山区不规则梁桥地震反应对比分析及减震方法研究[D]. 南京: 南京航空航天大学, 2007Ni Hongjiang. The research to comparison of seismic response of monotonic irregular girder bridge and the method of damping[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007 [14] 罗松涛,黄才良,荆友璋. 对称与不对称连续刚构桥动力特性对比分析[J]. 科技信息,2011(1):307-308Luo Songtao,Huang Cailiang,Jing Youzhang. Dynamic performance contrastive analysis of symmetric and asymmetric continuous rigid frame bridge[J]. Science & Technology Information,2011(1):307-308 [15] 李勇,闫维明,刘晶波,等. 近断层高架连续梁桥地震易损性与振动台试验研究[J]. 工程力学,2018,35(4):52-60,86Li Yong,Yan Weiming,Liu Jingbo,et al. Seismic Vulnerability analysis and a shaking table test of a near-fault continuous viaduct[J]. Engineering mechanics,2018,35(4):52-60,86 [16] Saiidi M S,Vosooghi A,Nelson R B. Shake-table studies of a four-span reinforced concrete bridge[J]. Journal of Structural Engineering,2013,139(8):1352-1361 doi: 10.1061/(ASCE)ST.1943-541X.0000790 [17] Abbasi M,Zakeri B,Amiri G G. Probabilistic seismic assessment of multiframe concrete box-girder bridges with unequal-height piers[J]. Journal of Performance of Constructed Facilities,2016,30(2):16-24 -