zhenbo

ISSN 2096-7780 CN 10-1665/P

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同墩高的矩形单肢薄壁空心墩动力特性的数值模拟

沈欣茹 周正华

沈欣茹, 周正华. 不同墩高的矩形单肢薄壁空心墩动力特性的数值模拟[J]. 地震科学进展, 2021, (4): 169-177. doi: 10.3969/j.issn.2096-7780.2021.04.003
引用本文: 沈欣茹, 周正华. 不同墩高的矩形单肢薄壁空心墩动力特性的数值模拟[J]. 地震科学进展, 2021, (4): 169-177. doi: 10.3969/j.issn.2096-7780.2021.04.003
Xinru Shen, Zhenghua Zhou. Numerical simulation of dynamic characteristics of rectangular single leg thin-wall hollow piers with different pier heights[J]. Progress in Earthquake Sciences, 2021, (4): 169-177. doi: 10.3969/j.issn.2096-7780.2021.04.003
Citation: Xinru Shen, Zhenghua Zhou. Numerical simulation of dynamic characteristics of rectangular single leg thin-wall hollow piers with different pier heights[J]. Progress in Earthquake Sciences, 2021, (4): 169-177. doi: 10.3969/j.issn.2096-7780.2021.04.003

不同墩高的矩形单肢薄壁空心墩动力特性的数值模拟

doi: 10.3969/j.issn.2096-7780.2021.04.003
基金项目: 国家自然科学基金项目(U1839202、U2039208)和国家重点研发计划项目(2017YFC1500400)联合资助
详细信息
    作者简介:

    沈欣茹(1999-),女,硕士在读学生,主要从事地震反应分析研究。E-mail:532646053@qq.com。

    通讯作者:

    周正华(1962-),男,教授,主要从事近场波动数值模拟等方面研究。E-mail:bjsmoc@163.com

  • 中图分类号: P315.9

Numerical simulation of dynamic characteristics of rectangular single leg thin-wall hollow piers with different pier heights

  • 摘要: 首先介绍研究高低墩特性的目的及意义,并对国内外关于高低墩动静力特性的研究现状进行概述;然后借助有限元软件ABAQUS建立5种不同高度的桥墩模型,并对其分别进行模态分析,提取其自振频率以及振型,分析其自振特点,再沿两个方向分别输入3组不同的地震动,对比分析结构的位移和加速度响应。研究表明:对于同一阶模态,桥墩高度的减小会导致其自振频率呈现增大的趋势;桥墩高度的变化会对较高阶振型产生影响;桥墩高度的减小可以显著减小结构的位移和加速度响应;地震动输入的不同带来的结构的位移响应和加速度响应的差异十分显著。

     

  • 图  1  50 m桥墩有限元计算模型

    Figure  1.  Finite element model of bridge pier

    图  2  模型1的前三阶模态振型

    (a) 、 (b) 、 (c)分别为模型1的第一阶、第二阶、第三阶模态振型

    Figure  2.  The first three modes of model 1

    (a) , (b) , (c)represent the first,second and third mode shapes of model 1 respectively

    图  7  不同高度桥墩前3阶自振频率对比

    Figure  7.  Comparison of the first three natural frequencies of piers with different heights

    图  3  模型2的前三阶模态振型

    (a) 、 (b) 、 (c)分别为模型2的第一阶、第二阶、第三阶模态振型

    Figure  3.  The first three modes of model 2

    (a) , (b) , (c)represent the first,second and third mode shapes of model 2 respectively

    图  4  模型3的前三阶模态振型

    (a) 、 (b) 、 (c)分别为模型3的第一阶、第二阶、第三阶模态振型

    Figure  4.  The first three modes of model 3

    (a) , (b) , (c)represent the first,second and third mode shapes of model 3 respectively

    图  5  模型4的前三阶模态振型

    (a) 、 (b) 、 (c)分别为模型4的第一阶、第二阶、第三阶模态振型

    Figure  5.  The first three modes of model 4

    (a) , (b) , (c)represent the first,second and third mode shapes of model 4 respectively

    图  6  模型5的前三阶模态振型

    (a) 、 (b) 、 (c)分别为模型5的第一阶、第二阶、第三阶模态振型

    Figure  6.  The first three modes of model 5

    (a) , (b) , (c)represent the first,second and third mode shapes of model 5 respectively

    图  8  大、中、小震加速度时程曲线

    Figure  8.  Acceleration time histories of large,medium and small earthquakes

    图  9  不同高度桥墩沿各轴向最大位移

    (a) 、 (b)分别为不同高度桥墩沿x轴向、y轴向最大位移

    Figure  9.  Maximum displacement of piers with different heights along each axis

    (a) , (b)represent the maximum displacements of piers with different heights along x-axis and y-axis

    图  10  不同高度桥墩沿各轴向加速度峰值

    (a) 、 (b)分别为不同高度桥墩沿x轴向、y轴向加速度峰值

    Figure  10.  Peak acceleration of piers with different heights along each axis

    (a) , (b)represent the peak accelerations of piers with different heights along x-axis and y-axis

    图  11  不同高度桥墩沿各轴向最大位移

    (a) 、 (b)分别为不同高度桥墩沿y轴向、z轴向最大位移

    Figure  11.  Maximum displacement of piers with different heights along each axis

    (a) , (b)represent the maximum displacements of piers with different heights along y-axis and z-axis

    图  12  不同高度桥墩沿各轴向加速度峰值

    (a) 、 (b)分别为不同高度桥墩沿y轴向、z轴向加速度峰值

    Figure  12.  Peak acceleration of piers with different heights along each axis

    (a) , (b)represent the peak accelerations of piers with different heights along y-axis and z-axis

    表  1  模型自振特性

    Table  1.   Natural vibration characteristics of models

    桥墩高度/m阶数自振频率/Hz振型描述
    50(模型1)11.1596短轴向弯曲
    21.3956长轴向弯曲
    36.9838短轴向弯曲
    40(模型2)11.7916短轴向弯曲
    22.1526长轴向弯曲
    310.575短轴向弯曲
    30(模型3)13.1208短轴向弯曲
    23.7366长轴向弯曲
    317.252扭转
    20(模型4)16.7055短轴向弯曲
    27.9595长轴向弯曲
    325.590扭转
    10(模型5)122.733短轴向弯曲
    226.167长轴向弯曲
    349.484扭转
    下载: 导出CSV

    表  2  大震作用下各方向最大位移

    Table  2.   Maximum displacements in all directions under large earthquake

    墩高/mx轴向/my轴向/mz轴向/m
    500.2459930.01980961.93251×10−7
    400.1271060.01267655.27659×10−7
    300.03720080.004859636.22255×10−7
    200.006100470.001145006.66610×10−7
    100.0001970716.25827×10-52.53129×10−7
    下载: 导出CSV

    表  7  小震作用下各方向加速度峰值

    Table  7.   Peak accelerations in all directions under small earthquake

    墩高/mx轴向/(m•s−2y轴向/(m•s−2z轴向/(m•s−2
    502.457460.1978971.50556×10−5
    402.843090.2835452.05689×10−5
    302.861870.3738544.92671×10−5
    201.737040.3260270.000189686
    100.2339780.0743050.000293183
    下载: 导出CSV

    表  3  中震作用下各方向最大位移

    Table  3.   Maximum displacements in all directions under medium earthquake

    墩高/mx轴向/my轴向/mz轴向/m
    500.1170960.009429659.59064×10−8
    400.05671560.005656362.36262×10−7
    300.02126790.002778283.61263×10−7
    200.003397770.000637733.71105×10−7
    100.0001113943.53747×10−51.43273×10−7
    下载: 导出CSV

    表  4  小震作用下各方向最大位移

    Table  4.   Maximum displacements in all directions under small earthquakes

    墩高/mx轴向/my轴向/mz轴向/m
    500.02590480.002086092.10175×10−8
    400.01458050.001454145.25103×10−8
    300.004970060.0006492528.29721×10−8
    200.000830670.0001559099.07419×10−8
    102.94653×10-59.35711×10-63.78934×10−8
    下载: 导出CSV

    表  5  大震作用下各方向加速度峰值

    Table  5.   Peak accelerations in all directions under large earthquake

    墩高/mx轴向/(m•s−2y轴向/(m•s−2z轴向/(m•s−2
    5022.96411.849280.000114906
    4022.39922.233910.00011655
    3020.06982.621770.000330838
    2011.33112.126740.00123832
    101.175310.3732440.00147798
    下载: 导出CSV

    表  6  中震作用下各方向加速度峰值

    Table  6.   Peak accelerations in all directions under medium earthquake

    墩高/mx轴向/(m•s−2y轴向/(m•s−2z轴向/(m•s−2
    509.829890.8225265.11267×10−5
    409.499280.9473717.70077×10−5
    3010.35531.352730.000182799
    205.392651.012150.000589022
    100.6128950.1946380.000769107
    下载: 导出CSV

    表  8  大震作用下各方向最大位移

    Table  8.   Maximum displacements in all directions under large earthquake

    墩高/mx轴向/my轴向/mz轴向/m
    502.60196×10−70.01917390.285033
    406.21327×10−70.01557840.188319
    304.51802×10−70.006869520.0625495
    202.79449×10−70.001315680.00825973
    102.35065×10−78.75803×10−50.00031328
    下载: 导出CSV

    表  13  小震作用下各方向加速度峰值

    Table  13.   Peak accelerations in all directions under small earthquake

    墩高/mx轴向/(m•s−2y轴向/(m•s−2z轴向/(m•s−2
    504.48997×10−60.2848162.52882
    405.7515×10−50.2909152.86703
    300.0001021560.3490433.17817
    205.8348×10−50.2758411.73171
    100.0003398180.1262710.451679
    下载: 导出CSV

    表  9  中震作用下各方向最大位移

    Table  9.   Maximum displacements in all directions under medium earthquake

    墩高/mx轴向/my轴向/mz轴向/m
    501.18769×10−70.008783130.131267
    403.44923×10−70.007205930.0854829
    302.09077×10−70.002755010.0250854
    201.40487×10−70.0006592590.00413877
    101.18005×10−74.40015×10−50.000157396
    下载: 导出CSV

    表  10  小震作用下各方向最大位移

    Table  10.   Maximum displacements in all directions under small earthquake

    墩高/mx轴向/my轴向/mz轴向/m
    503.39434×10−80.002578690.0382815
    407.60893×10−80.00180040.0215028
    306.07219×10−80.0009141870.00832402
    203.78942×10−80.0001784530.00112031
    103.26441×10−81.21614×10−54.3502×10−5
    下载: 导出CSV

    表  11  大震作用下各方向加速度峰值

    Table  11.   Peak accelerations in all directions under large earthquake

    墩高/mx轴向/(m•s−2y轴向/(m•s−2z轴向/(m•s−2
    503.78117×10−52.3537521.4982
    400.0003391142.3397726.1326
    300.0005090312.5432123.157
    200.0004189282.0010912.5627
    100.001266160.4697921.68046
    下载: 导出CSV

    表  12  中震作用下各方向加速度峰值

    Table  12.   Peak accelerations in all directions under medium earthquake

    墩高/mx轴向/(m•s−2y轴向/(m•s−2z轴向/(m•s−2
    501.90666×10−51.2192610.0978
    400.000197861.2509712.0298
    300.000144131.3029711.864
    200.0001891730.8922075.6012
    100.0007945210.2952181.05601
    下载: 导出CSV
  • [1] 张顺民. 连续刚构高低墩桥受力和变形分析[J]. 南阳理工学院学报,2015,7(6):94-97

    Zhang Shunmin. The analysis of asymmetric bridge pier[J]. Journal of Nanyang Institute of Technology,2015,7(6):94-97
    [2] 董宏伟,邢江. 单线铁路高低墩大跨连续刚构桥结构刚度分析[J]. 工程技术研究,2019,4(6):9-11

    Dong Hongwei,Xing Jiang. Structural stiffness analysis of long span continuous rigid frame bridge of single track railway with high and low piers[J]. Engineering and Technological Research,2019,4(6):9-11
    [3] 朱静. 不对称连续刚构桥受力分析[D]. 辽宁: 大连理工大学, 2011

    Zhu Jing. Force analysis of asymmetric continuous rigid frame bridge[D]. Liaoning: Dalian University of Technology, 2011
    [4] 姜楠,刘鹏. 近断层地震动对高低墩连续刚构桥受力影响分析[J]. 山西建筑,2017,43(8):174-175

    Jiang Nan,Liu Peng. Analysis on the force influence of near fault earthquake to high-low pier continuous rigid frame bridge[J]. Shanxi Architecture,2017,43(8):174-175
    [5] 程志友,钱骥,陈鑫,等. 高低墩连续刚构桥的动力特性与抗震分析[J]. 铁道建筑,2018,58(7):18-21

    Cheng Zhiyou,Qian Ji,Chen Xin,et al. Dynamic characteristics and anti-seismic analysis of continuous rigid frame bridge with high and low piers[J]. Railway Engineering,2018,58(7):18-21
    [6] 周伟. 不对称跨径连续刚构桥静力仿真计算及地震反应分析[D]. 湖南: 长沙理工大学, 2007

    Zhou Wei. The artificial calculation and seismic response analysis of asymmetric continuous rigid-frame bridge[D]. Hu’nan: Changsha University of Science & Technology, 2007
    [7] 何伟,刘鹏. 近断层高低墩连续刚构桥抗震分析[J]. 工程抗震与加固改造,2018,40(1):72-75

    He Wei,Liu Peng. Seismic analysis of continuous rigid frame bridge with high-low piers in the near-fault area[J]. Earthquake Resistant Engineering and Retrofitting,2018,40(1):72-75
    [8] 陈全. 高墩大跨连续刚构桥抗震影响因素研究[D]. 四川: 西南交通大学, 2013

    Chen Quan. The analysis of anti-seismic factors of high-pier long-span continuous rigid frame bridge[D]. Sichuan: Southwest Jiaotong University, 2013
    [9] 王建忠. 非对称高墩连续刚构桥的地震反应分析与减震措施[D]. 重庆: 重庆大学, 2014

    Wang Jianzhong. Seismic response analysis and vibration reducing measures of the continuous girder bridge with asymmetrical high bridge piers[D]. Chongqing: Chongqing University, 2014
    [10] 耿江玮,朱东生,向中富,等. 非规则连续梁桥非线性地震反应分析[J]. 重庆交通大学学报(自然科学版),2011,30(2):185-189,281

    Geng Jiangwei,Zhu Dongsheng,Xiang Zhongfu,et al. Nonlinear seismic response analysis of irregular continuous bridge[J]. Journal of Chongqing Jiaotong University (Natural Science),2011,30(2):185-189,281
    [11] 李可欣. 高墩大跨连续刚构桥地震响应下的弹塑性分析[D]. 云南: 昆明理工大学, 2017

    Li Kexin. Elastic-plastic analysis of seismic response of high-pier and long-span continuous rigid frame bridge[D]. Yunnan: Kunming University of Science & Technology, 2017
    [12] 周朋,黄才良,张哲,等. 不对称连续刚构桥动力特性分析[J]. 公路,2013,58(12):83-87

    Zhou Peng,Huang Cailiang,Zhang Zhe,et al. Analysis of dynamic behavior of unsymmetrical continuous rigid frame bridge[J]. Highway,2013,58(12):83-87
    [13] 倪洪将. 山区不规则梁桥地震反应对比分析及减震方法研究[D]. 南京: 南京航空航天大学, 2007

    Ni Hongjiang. The research to comparison of seismic response of monotonic irregular girder bridge and the method of damping[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007
    [14] 罗松涛,黄才良,荆友璋. 对称与不对称连续刚构桥动力特性对比分析[J]. 科技信息,2011(1):307-308

    Luo Songtao,Huang Cailiang,Jing Youzhang. Dynamic performance contrastive analysis of symmetric and asymmetric continuous rigid frame bridge[J]. Science & Technology Information,2011(1):307-308
    [15] 李勇,闫维明,刘晶波,等. 近断层高架连续梁桥地震易损性与振动台试验研究[J]. 工程力学,2018,35(4):52-60,86

    Li Yong,Yan Weiming,Liu Jingbo,et al. Seismic Vulnerability analysis and a shaking table test of a near-fault continuous viaduct[J]. Engineering mechanics,2018,35(4):52-60,86
    [16] Saiidi M S,Vosooghi A,Nelson R B. Shake-table studies of a four-span reinforced concrete bridge[J]. Journal of Structural Engineering,2013,139(8):1352-1361 doi: 10.1061/(ASCE)ST.1943-541X.0000790
    [17] Abbasi M,Zakeri B,Amiri G G. Probabilistic seismic assessment of multiframe concrete box-girder bridges with unequal-height piers[J]. Journal of Performance of Constructed Facilities,2016,30(2):16-24
  • 加载中
图(12) / 表(13)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  138
  • PDF下载量:  9
出版历程
  • 收稿日期:  2021-01-18
  • 修回日期:  2021-02-02
  • 刊出日期:  2021-04-25

目录

    /

    返回文章
    返回
    本系统由北京仁和汇智信息技术有限公司设计开发 百度统计