Analysis of variation characteristics of radon observation data in Bengbu station
-
摘要: 对蚌埠地震台2020年4月15日以来出现的水氡数据转折下降—恢复上升的变化趋势进行分析,文章通过环境调查、气象因素对比、抽水取样化验后和研究得出:本次水氡变化与气温水温呈正相关关系,相关性显著,气温引起水温的变化,进而引起气体的溶解度和脱气率改变,从而引起水氡测值的变化。结合往年震例分析结果认为,气温可能不是引起水氡测值下降的单一因素,应该是环境干扰与地震前兆信息共同作用的结果,而水氡与气温之间的相关系数降低,与周边发生地震有一定的关联性。Abstract: This paper analyzes the trend of water radon data from Bengbu seismic station since April 15, 2020. It is found that radon in Bengbu station is fluctuating. Through environmental investigation, comparison of meteorological factors and pumping sampling test, it is concluded that the change of radon in water has a positive and significant correlation with air temperature and water temperature. The air temperature changes the water temperature, and then changes the solubility and degassing rate of gas, thus causing the change of radon measurement value in water. According to the analysis results of previous earthquake cases, air temperature may not be the only factor causing the drop in radon readings. It should be the result of the interaction of environmental disturbance and earthquake precursory information. It is concluded that the reduction of correlation coefficient between water radon and temperature is related to the surrounding earthquakes.
-
Key words:
- radon in water /
- earthquake /
- temperature
-
表 1 气温影响水氡数值下降幅度变化情况
Table 1. Influence of temperature on the decline of radon in water
类别 2016年 2017年 2018年 2019年 2020年 气温下降幅度 / 10.045 13.021 10.137 10.039 水氡下降幅度 / 2.8% 2.9% 4.6% 2.6% 下降持续时间 / 20天 15天 26天 30天+ 表 2 2016—2020年蚌埠周边发生ML≥3.5地震
Table 2. Earthquakes with ML≥3.5 occurred around Bengbu from 2016 to 2020
发震时间 震中位置 震级(ML) 震源深度/km 发震地点 震中距/km 年-月-日 时:分:秒 纬度/°N 经度/°E 2016-04-15 17:55:42 31.31 117.74 3.6 6 安徽无为 <180 2017-04-29 00:53:24 31.69 115.80 3.7 6 安徽金寨 <180 2018-04-06 23:55:07 31.21 117.75 3.6 7 安徽无为 <180 2019-11-01 15:33:02 32.47 117.59 3.5 8 安徽定远 <50 -
[1] 杜建国, 康春丽. 地震地下流体发展概述[J]. 地震, 2000, 20(增刊): 107-114Du Jianguo, Kang Chunli. A brief review on study of earthquake-caused change of underground fluid[J]. Earthquake, 2000, 20(Suppl.): 107-114 [2] 刘轶男. 丰满台水氡异常特征分析[J]. 华北地震科学,2017,35(4):80-83 doi: 10.3969/j.issn.1003-1375.2017.04.015Liu Yinan. Anomaly characteristics of groundwater radon in Fengman seismic station[J]. North China Earthquake Science,2017,35(4):80-83 doi: 10.3969/j.issn.1003-1375.2017.04.015 [3] 陈志,杜建国,周晓成,等. 2012年6月30日新源MS6.6地震前后北天山泥火山及温泉的水化学变化[J]. 地震,2014,34(3):97-107 doi: 10.3969/j.issn.1000-3274.2014.03.009Chen Zhi,Du Jianguo,Zhou Xiaocheng,et al. Hydrogeochemical changes of mud volcanoes and springs in north Tianshan related to the June 30,2012 Xinyuan MS6.6 earthquake[J]. Earthquake,2014,34(3):97-107 doi: 10.3969/j.issn.1000-3274.2014.03.009 [4] 国家地震局科技技术监测司. 地震地下水手册[M]. 北京: 地震出版社, 1995: 380-381Science and Technology Monitoring Department of State Seismological Bureau. Earthquake groundwater Handbook[M]. Beijing: Seismological Press, 1995: 380-381 [5] 白宝荣,付虹. 排除降雨干扰后的地下水位异常与强震预报[J]. 地震研究,2006,29(1):39-42 doi: 10.3969/j.issn.1000-0666.2006.01.008Bai Baorong,Fu Hong. Groundwater level anomalies after eliminating rainfall influence and predictions of strong earthquakes[J]. Journal of Seismological Research,2006,29(1):39-42 doi: 10.3969/j.issn.1000-0666.2006.01.008 [6] 胡小静,付虹,毕青. 基于年降水干扰排除的云南地区地下水位群体异常研究[J]. 地震研究,2016,39(4):545-552 doi: 10.3969/j.issn.1000-0666.2016.04.003Hu Xiaojing,Fu Hong,Bi Qing. Research on group anomalies of groundwater level in Yunnan region based on eliminating precipitation interference[J]. Journal of Seismological Research,2016,39(4):545-552 doi: 10.3969/j.issn.1000-0666.2016.04.003 [7] 张慧,顾申宜,李志雄,等. 单井多层位水温微动态初步研究[J]. 地震,2013,33(1):101-110Zhang Hui,Gu Shenyi,Li Zhixiong,et al. Preliminary study on micro-behaviors of water temperature at different layers in the same well[J]. Earthquake,2013,33(1):101-110 [8] 董蕾,陈敏,马伟,等. 荣昌华江井水温多层微动态特征[J]. 地震地磁观测与研究,2017,38(6):72-78 doi: 10.3969/j.issn.1003-3246.2017.06.013Dong Lei,Chen Min,Ma Wei,et al. Micro-behavior of well water temperature in different layer of Huajiang well in Rongchang County[J]. Seismological and Geomagnetic Observation and Research,2017,38(6):72-78 doi: 10.3969/j.issn.1003-3246.2017.06.013 [9] 杨竹转. 地震波引起的井水位水温同震变化及其机理研究[J]. 国际地震动态,2012(11):42-47 doi: 10.3969/j.issn.0253-4975.2012.11.014Yang Zhuzhuan. Coseismic variations of well water level and temperature caused by earthquake waves and their generating mechanisms[J]. Recent Developments in World Seismology,2012(11):42-47 doi: 10.3969/j.issn.0253-4975.2012.11.014 [10] 王康,姚玉霞,李松林,等. 气温气压与氡浓度短期变化的相关性分析[J]. 华南地震,2018,38(3):91-98Wang Kang,Yao Yuxia,Li Songlin. Correlativity between short-term change of radon concentration and air temperature & air pressure[J]. South China Journal of Seismology,2018,38(3):91-98 [11] 曹玲玲. 甘肃氡突变型变化成因及其预报效能分析[J]. 西北地震学报,2010,32(3):286-291Cao Lingling. Analysis on the genesis of radon values quick-change and its efficiency of earthquake prediction in Gansu Province[J]. Northwestern Seismological Journal,2010,32(3):286-291 -