The composition, development and application of crustal deformation observation system in earthquake monitoring and prediction
-
摘要: 简要介绍地震地形变观测系统的组成及地形变观测技术的发展,指出不同观测技术的时空特点,光纤和长基线应变仪等新技术的优点以及不同地形变观测技术进行联合观测的可行性和方法优势。通过对日本岐阜县安装的1500 m臂长应变仪与GNSS地球观测网(GEONET)中的连续观测站获取的应变进行比对的实例分析,得出从连续观测站获取的水平应变去趋势后与应变仪得到的连续应变结果基本一致,地震会引起应变异常,应变仪对环境因素的影响更敏感。实际工作中应注意发展优势观测技术,进行观测技术和研究方法的融合、提高监测密度,增强时空分辨率,提升地震前兆特征识别能力,更好地为科学防震减灾服务。Abstract: By presenting the composition of the crustal deformation observation system and the development of the observation techniques, we show the space-time characteristics of the different observation techniques, the advantage of the application of the optical fiber and long-baseline strainmeter and the integrated technique. It was found that the strain recorded by the 1500 m laser strainmeter constructed at Gifu Prefecture, Japan are nearly consistent with the calculated values based on the continuous GNSS stations of the GEONET (GPS Earth Observation Network). Some earthquakes can cause abnormal strains. The strainmeter is more sensitive to the environments. In practical work, we should develop the advanced techniques, use various observation techniques and research method and increase the monitoring density. It will improve the spatial and temporal resolution and promote the identification ability of the earthquake precursory characteristics and better serve scientific mitigating the disasters.
-
表 1 地形变监测系统组成与地震预报
Table 1. Composition of crustal deformation observation system and earthquake prediction
对象 系统类别 观测技术 应用(地震预报) 地
形
变
监
测
系
统中国大陆地
壳形变监测GNSS(包括VLBI、SLR)
大面积水准
中国大陆重力网区域地壳
形变监测GNSS
区域水准
区域流动重力断层形变
监测系统场地观测 GNSS/长水准剖面
重力剖面
短水准、短基线定点台站 蠕变仪
短水准、短基线固体潮汐形
变监测系统地倾斜(洞体倾斜和钻孔倾斜)
地应变(洞体应变和钻孔应变)
重力 -
[1] 牛安福,江在森. 我国地形变观测预报地震的现状及对地震预测问题的思考[J]. 国际地震动态,2005(5):174-178 doi: 10.3969/j.issn.0253-4975.2005.05.032 [2] 国家地震局科技监测司. 地震地形变观测技术[M]. 北京: 地震出版社, 1995: 1-446 [3] 张国安,陈德福,陈耿琦,等. 中国地壳形变连续观测的发展与展望[J]. 地震研究,2002,25(4):383-390 doi: 10.3969/j.issn.1000-0666.2002.04.014 [4] 张晓东. 地震预报科学发展需要新思维和新的观测手段[J]. 地震,2002,22(2):17-21 doi: 10.3969/j.issn.1000-3274.2002.02.005 [5] 陈燚飞,吕品姬. PBO钻孔应变同震响应分析[J]. 大地测量与地球动力学,2019,39(7):765-770 [6] 李杰,唐廷梅,荆强,等. 跨断层形变测量异常特征分析[J]. 地震,2010,30(2):100-111 doi: 10.3969/j.issn.1000-3274.2010.02.012 [7] 李海亮,李宏. 钻孔应变观测现状与展望[J]. 地质学报,2010,84(6):895-900 [8] 邱泽华,池顺良. YRY-4型钻孔应变仪观测的P波剪应变[J]. 地震,2013,33(4):64-70 doi: 10.3969/j.issn.1000-3274.2013.04.007 [9] 顾国华. 地壳形变与地震前兆探索回顾和展望[J]. 地震,2012,32(2):22-30 doi: 10.3969/j.issn.1000-3274.2012.02.003 [10] 刘文义,张文涛,李丽,等. 光纤传感技术未来地震监测的发展方向[J]. 地震,2012,32(4):92-102 doi: 10.3969/j.issn.1000-3274.2012.04.010 [11] Gomberg J,Agnew D C. The accuracy of seismic estimates of dynamic strains:An evaluation using strainmeter and seismometer data from Piñon Flat Observatory,California[J]. Bull. Seismol. Soc. Amer.,1996,86(1A):212-220 [12] Araya A,Takamori A,Morii W,et al. Analyses of far-field coseismic crustal deformation observed by a new laser distance measurement system[J]. Geophys. J. Inter.,2010,181(1):127-140 doi: 10.1111/j.1365-246X.2010.04509.x [13] 张晶,江在森. 有关我国形变监测预报发展的几点建议[J]. 国际地震动态,2017(2):3-6 doi: 10.3969/j.issn.0235-4975.2017.02.003 [14] 牛安福,张凌空,闫伟,等. 中国钻孔应变观测能力及在地震预报中的应用[J]. 大地测量与地球动力学,2011,31(2):48-52 [15] 赖爱京,张锦萍,蒋志英,等. 2016年7月19日新疆MS4.5级地震乌什地震台形变异常[J]. 震灾防御技术,2017,12(2):433-440 doi: 10.11899/zzfy20170221 [16] Araya A,Takamori A,Morii W,et al. Design and operation of a 1500-m laser strainmeter installed at an underground site in Kamioka,Japan[J]. Earth Planets Space,2017,69:77 doi: 10.1186/s40623-017-0660-0 [17] Shen Z K,Wang M,Zeng Y H,et al. Optimal interpolation of spatially discretized geodetic data[J]. Bull. Seismol. Soc. Amer.,2015,105(4):2117-2127 doi: 10.1785/0120140247 [18] 孙玉军,李杰,曹建玲,等. 深部洞室中微小温度年度变化足以造成地应变年度变化[J]. 地震学报,2008,30(5):464-473 doi: 10.3321/j.issn:0253-3782.2008.05.004 [19] 张凌空,牛安福,闫伟,等. 两种应变仪的面应变观测资料的比对研究[J]. 大地测量与地球动力学,2011,31(4):22-26 -