Spectral element method simulation of three-dimensional sedimentary basin under reverse-fault earthquakes
-
摘要: 近断层地震动对近场区域会造成严重的地震灾害,尤其区域内存在沉积地形时会进一步加重灾害。目前,针对释放能量更大、破坏力更强的逆冲断层地震作用下沉积盆地的地震动响应研究还未见报道。本文即采用谱元法,研究了动力学逆断层地震作用下的三维沉积盆地的动力响应。文中以椭球形沉积盆地为例,对其逆断层地震动响应特性进行了分析,并探讨了改变内外介质波速比和沉积厚度时沉积盆地内部观测点地震动时程和峰值变化规律。研究表明:①沉积内外介质波速比对沉积盆地的地震动影响显著,当沉积内部介质波速比降低时,盆地内部地表的峰值响应增大,地震动持续时间明显延长,尤其是位于盆地中心加速度峰值放大2.08倍,持时延长1.97倍;②沉积盆地厚度同样对其地震动响应产生影响,当沉积厚度增加时盆地中心位置地震动响应减小,加速度峰值缩小约0.64倍,而盆地边缘区域的地震动响应明显增大,峰值放大约1.35倍。Abstract: Near-fault ground motion can cause serious earthquake disaster in the near-field area, especially when there is sedimentary topography in the area. At present, there are no reports on the ground motion response of sedimentary basins under the action of thrust faults which release more energy and have more destructive force. In this paper, spectral element method is used to establish the overall physical model of the dynamic source containing the reverse fault and the three-dimensional sedimentary basin. The dynamic response of the three-dimensional sedimentary basin under the dynamic reverse fault seismic action is studied. Taking an ellipsoid sedimentary basin as an example, this paper analyzes the characteristics of the ground motion response of its reverse faults, and discusses the time-history and peak variation of the ground motion at the observation points in the sedimentary basin under different wave velocity ratios and thickness of the sedimentary medium. The results show that: ① The wave velocity ratio of medium inside and outside the sedimentary basin has a significant influence on ground motion in the sedimentary basin. When the wave velocity ratio of medium inside the sedimentary basin decreases, the peak response on the surface inside the basin increases, and the duration of ground motion significantly extends. In particular, the peak acceleration in the center of the basin magnifies by 2.08 times, and the duration extends by 1.97 times; ② The thickness of a sedimentary basin also has an impact on its ground motion response. When the sedimentary thickness increases, the ground motion response at the center of the basin decreases by 0.64 times, while the ground motion response at the edge of the basin increases significantly, by about 1.35 times.
-
表 1 计算模型介质参数
Table 1. Properties of the simulation model
介质密度ρ/(kg•m−3) 剪切波速vS/(m•s−1) 压缩波速vP/(m•s−1) 品质因子Q 深度/km 厚度/km 基岩 沉积盆地 基岩 沉积盆地 基岩 沉积盆地 基岩 沉积盆地 2600 2 000 2 000 500 3600 900 600 30 3 3 2600 2 000 3600 600 3 6 3000 3200 5000 900 24 30 表 2 观测点位置
Table 2. Location of observation point
坐标名称 坐标位置(x,y,z) P1 (0,2 km,30 km) P2(盆地边缘) (0,0 km,30 km) P3(盆地1/4处) (0,−3 km,30 km) P4 (盆地中心) (0,−6 km,30 km) P5(盆地1/4处) (0,−9 km,30 km) P6(盆地边缘) (0,−12 km,30 km) 表 3 断层上的摩擦和应力参数
Table 3. Friction and stress parameters on the fault
断层参数 断层面上核心区 断层面上除核心区以外的部分 粘聚力C,(MPa) 0.2 0.2 静摩擦系数,μs 0.6 0.6 动摩擦因数,μd 0.2 0.2 滑移弱化距离,δ0 (m) 0.5 0.5 初始法向应力,σ0 (MPa) −0.0026667×hd −0.0026667×hd 初始切向应力,τ0 (MPa) C+σ0(0.0057+μs) 0.55σ0 注:表3中hd为沿断层面倾向的距离 -
[1] 李雪强. 沉积盆地地震效应研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2011Li Xueqiang. Study on seismic effect of sedimentary basin[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2011 [2] Anderson J G,Bodin P,Brune J N,et al. Strong ground motion from the Michoacan,Mexico,earthquake[J]. Science,1986,233(4786):1043-1049 [3] 刘启方,于彦彦,章旭斌. 施甸盆地三维地震动研究[J]. 地震工程与工程振动,2013,33(4):54-60Liu Qifang,Yu Yanyan,Zhang Xubin. Three-dimensional ground motion simulation for Shidian basin[J]. Earthquake Engineering and Engineering Vibration,2013,33(4):54-60 [4] 张宇翔,袁志祥. 汶川8.0级地震陕西灾区震害特征分析[J]. 地震研究,2010,33(3):329-335,354 doi: 10.3969/j.issn.1000-0666.2010.03.014Zhang Yuxiang,Yuan Zhixiang. Analysis on the characteristics of earthquake damages of the MS8.0 Wenchuan earthquake in the affected area in Shaanxi[J]. Journal of Seismological Research,2010,33(3):329-335,354 doi: 10.3969/j.issn.1000-0666.2010.03.014 [5] 景立平,卓旭炀,王祥建. 复杂场地对地震波传播的影响[J]. 地震工程与工程振动,2005,25(6):16-23 doi: 10.3969/j.issn.1000-1301.2005.06.004Jing Liping,Zhuo Xuyang,Wang Xiangjian. Effect of complex site on seismic wave propagation[J]. Earthquake Engineering and Engineering Vibration,2005,25(6):16-23 doi: 10.3969/j.issn.1000-1301.2005.06.004 [6] 高孟潭,俞言祥,张晓梅,等. 北京地区地震动的三维有限差分模拟[J]. 中国地震,2002,18(4):356-364 doi: 10.3969/j.issn.1001-4683.2002.04.005Gao Mengtan,Yu Yanxiang,Zhang Xiaomei,et al. Three-dimensional finite-difference simulations of ground motions in the Beijing area[J]. Earthquake Research in China,2002,18(4):356-364 doi: 10.3969/j.issn.1001-4683.2002.04.005 [7] 巴振宁,陈昊维,梁建文. 任意多个沉积谷地对平面SV波的散射[J]. 振动与冲击,2018,37(5):98-107Ba Zhenning,Chen Haowei,Liang Jianwen. Scattering of arbitrary alluvial valleys to incident plane SV waves[J]. Journal of Vibration and Shock,2018,37(5):98-107 [8] 刘中宪,苗岳云,陈頔. 点震源作用下三维沉积盆地地震动谱元模拟[J]. 世界地震工程,2020,36(2):200-208Liu Zhongxian,Miao Yueyun,Chen Di. Seismic spectral element simulation of three-dimensional sedimentary basin under the action of point seismic source[J]. World Earthquake Engineering,2020,36(2):200-208 [9] 于彦彦. 三维沉积盆地地震效应研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2016Yu Yanyan. Research on seismic effects in three-dimensional sedimentary basins[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2016 [10] 高阳. 随机有限断层法模拟中强地震近场地震动的研究及应用[J]. 国际地震动态,2016(1):43-44Gao Yang. Study and application of random finite method to simulate near ground vibration of medium and strong earthquake[J]. Recent Development in World Seismology,2016(1):43-44 [11] Emeline M,Emmanuel C,Nikolaos P T,et al. Source-related variability of site response in the Mygdonian basin (greece)from accelerometric recordings and 3D numerical simulations[J]. Bull. Seismol. Soc. Amer.,2017,107(2):787-808 [12] 徐泽龙. 逆断层错动引起上覆土层破裂的模型试验研究[D]. 杭州: 浙江大学, 2015Xu Zelong. Experimental study on the fault rupture of overlying soil induced by reverse fault slip[D]. Hangzhou: Zhejiang University, 2015 [13] Dimitri K,Tromp J. Introduction to the spectral element method for three-dimensional seismic wave propagation[J]. Geophysical Journal of the Royal Astronomical Society,1999,139(3):806-822 [14] Galvez P, Ampuero J P, Dalguer L A, et al. Dynamic rupture modeling of the 2011 M9 Tohoku earthquake with an unstructured 3D spectral element method[C]//AGU Fall Meeting Abstracts, 2011 [15] Kaneko Y,Lapusta N,Ampuero J P. Spectral-element modeling of spontaneous earthquake rupture on rate and state faults:Effect of velocity- strengthening friction at shallow depths[J]. J. Geophys. Res. Solid Earth,2008,113(B9) [16] Christian P,Josep de la Puente,Ampuero J P,et al. Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes[J]. J. Geophys. Res. Solid Earth,2012,117(B2) [17] Cupillard P,Delavaud E,Burgos G,et al. RegSEM:A versatile code based on the spectral element method to compute seismic wave propagation at the regional scale[J]. Geophys. J. Int.,2012,188(3):1203-1220 [18] 李孝波,薄景山,齐文浩,等. 地震动模拟中的谱元法[J]. 地球物理学进展,2014,29(5):2029-2039 doi: 10.6038/pg20140506Li Xiaobo,Bo Jingshan,Qi Wenhao,et al. Spectral element method in seismic ground motion simulation[J]. Progress in Geophysics,2014,29(5):2029-2039 doi: 10.6038/pg20140506 -