zhenbo

ISSN 2096-7780 CN 10-1665/P

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鄂尔多斯活动地块边界带地震动力学模型与强震危险性研究项目及进展

郑文俊 王庆良 陈九辉 张竹琪 郝明 沈旭章

郑文俊, 王庆良, 陈九辉, 张竹琪, 郝明, 沈旭章. 鄂尔多斯活动地块边界带地震动力学模型与强震危险性研究项目及进展[J]. 地震科学进展, 2020, (4): 1-21. doi: 10.3969/j.issn.2096-7780.2020.04.001
引用本文: 郑文俊, 王庆良, 陈九辉, 张竹琪, 郝明, 沈旭章. 鄂尔多斯活动地块边界带地震动力学模型与强震危险性研究项目及进展[J]. 地震科学进展, 2020, (4): 1-21. doi: 10.3969/j.issn.2096-7780.2020.04.001
Wenjun Zheng, Qingliang Wang, Jiuhui Chen, Zhuqi Zhang, Ming Hao, Xuzhang Shen. Project plan and research progress on geodynamic models of earthquakes and strong seismic hazards in boundary zone of the Ordos active block[J]. Progress in Earthquake Sciences, 2020, (4): 1-21. doi: 10.3969/j.issn.2096-7780.2020.04.001
Citation: Wenjun Zheng, Qingliang Wang, Jiuhui Chen, Zhuqi Zhang, Ming Hao, Xuzhang Shen. Project plan and research progress on geodynamic models of earthquakes and strong seismic hazards in boundary zone of the Ordos active block[J]. Progress in Earthquake Sciences, 2020, (4): 1-21. doi: 10.3969/j.issn.2096-7780.2020.04.001

鄂尔多斯活动地块边界带地震动力学模型与强震危险性研究项目及进展

doi: 10.3969/j.issn.2096-7780.2020.04.001
基金项目: 国家重点研发计划项目(2017YFC1500100)、第二次青藏高原综合科学考察研究(2019QZKK0901)和国家自然科学基金项目(41590861)共同资助。
详细信息
    通讯作者:

    郑文俊(1972-),男,教授,主要从事新构造、活动构造、构造地貌与地震危险性评价方面的研究。E-mail:zhengwenjun@mail.sysu.edu.cn

  • 中图分类号: P315.9

Project plan and research progress on geodynamic models of earthquakes and strong seismic hazards in boundary zone of the Ordos active block

  • 摘要: 鄂尔多斯地块及其周缘地区的地震动力学和强震危险性研究,是检验和发展活动地块理论的理想场所。近年来,伴随青藏高原动力学研究视角的不断扩大,逐渐成为国内外新的地学研究热点。项目以“丝绸之路”经济带东端、我国重点强震危险区之一的鄂尔多斯活动地块为研究对象,构建活动地块及边界带三维深浅结构和构造变形模式,建立适用于板块内部的强震孕育动力学模型,完善大陆强震孕育和发生的活动地块理论,研发具有物理意义的时间相关强震预测理论模型,提出地震危险性理论预测技术规程。我国科学家20世纪末提出的大陆强震受控于活动地块的理论,为中国大陆强震危险地点预测提供了重要理论指导,但是如何将该理论更好地应用于实际的强震危险性预测研究中,还需要进一步深入研究活动地块运动和变形如何控制边界带强震的孕育和发生过程。选择鄂尔多斯活动块为研究的目标区,重点开展以下几个方面的研究内容:地块边界带断裂活动习性与强震复发行为;地块及周缘现今三维地壳运动与应变分配;地块及边界带深部结构与深-浅构造耦合;活动地块理论完善与边界带强震危险性研究。项目执行两年来,在几个方面均取得了进展和初步成果,建立了主要边界带断裂强震复发行为模式,获得了地块及周缘不同类型现今三维地壳运动状态,建立了关键区域地块边界带深-浅构造耦合构造模型,开展了边界带强震危险性研究。

     

  • 图  1  不同课题之间逻辑关系

    Figure  1.  The relationship between different subjects

    图  2  项目总体实施方案及技术路线

    Figure  2.  Implementation plan and technical route of the project

    图  3  鄂尔多斯活动地块及周缘活动构造与地震分布图(转引自文献[31])

    Figure  3.  Major active tectonics and regional seismicity in and around the Ordos active block(Modified from the reference [31])

    图  4  项目知识库结构示意图

    Figure  4.  Schematic diagram of knowledge base architecture

    图  5  鄂尔多斯北缘断裂分布(下)及古地震活动特征(上)

    Figure  5.  Active fault distributions(lower)and Paleoearthquake characteristics(upper)in the northern margin of Ordos active block                   

    图  6  鄂尔多斯西南缘块体之间运动特征与运动模式[38]

    Figure  6.  Motion characteristics and patterns between different blocks in the southwestern margin of Ordos active block[38]

    图  7  鄂尔多斯及周缘GPS台站分布

    Figure  7.  Distributions of GPS stations in and around the Ordos active block

    图  8  鄂尔多斯及周缘水准网分布

    Figure  8.  Distributions of leveling lines in and around the Ordos active block

    图  9  跨六盘山断裂带连续GPS台站分布

    (a)黄色图框为已确定的长剖面踏勘位置; (b、c)为台站场地照片

    Figure  9.  Distributions of continuous GPS stations across the Liupanshan fault zone

    (a)the identified location of GPS profile is shown in yellow; (b)and(c)are station pictures

    图  10  鄂尔多斯地块及周缘地区的水平运动速度场

    Figure  10.  Horizontal velocity fields in and around the Ordos active block

    图  11  鄂尔多斯地块及周缘地区垂直运动速度场

    Figure  11.  Vertical velocity fields in and around the Ordos active block

    图  12  鄂尔多斯活动地块及周缘基线长度(a)和三角网主应变(b)变化

    (a)中数值代表基线变化率(正值为伸长,负值为缩短)

    Figure  12.  Changes of baseline length(a)and main strain(b)in and around the Ordos active block

    The values in the(a)represent rates of change for baseline(the positive values are elongated,whereas the negative values are shortened)

    图  13  鄂尔多斯周边地震台站分布

    红色三角为区域固定台站;深绿色线段为块体边界

    Figure  13.  Distributions of seismic stations in and around the Ordos active block

    The regional fixed stations are shown in the red triangle,the block boundaries are shown in the dark green line

    图  14  层析成像P波速度在不同深度的剖分结果[44-45]

    图中剖面分别表示10 km,20 km,30 km及40 km深度上的速度结构

    Figure  14.  Segmentation results of P-wave velocity in different depths[44-45]

    The maps in the figure are shown the velocity sturctures at depths of 10,20,30 and 40 km

    图  15  鄂尔多斯地块周缘地区流动地震台阵测点分布图

    实心三角代表已搜集数据的台站,空心三角为待搜集数据的台站

    Figure  15.  Distributions of mobile seismic array survey points in and around the Ordos active block

    Stations that have been collected data are shown in the solid triangles,whereas in the hollow triangles

    图  16  不同深度的S波速度结构图

    Figure  16.  S-wave velocity structures at different depths

    图  17  鄂尔多斯西北缘速度间断面结构[46]

      图D中白线对应图A、B和C的剖面位置,剖面上黑色圆点间隔距离为1°,蓝色三角形为本文所用台站,台站周围的   红色点为Moho转换点位置,灰色实线为该区域断层分布,HTG:河套断陷盆地,YCG:银川断陷盆地,HL:贺兰山,          YBL:雅布赖山,HHF:黄河断裂,ZWPF:卓子山西麓断裂,DBF:磴口—本井断裂

    Figure  17.  Structures of velocity discontinuity in the northwestern margin of the Ordos active block[46]

       Locations of the three profiles in the figures A,B,and C are indicated in figure D,the black dots on the profiles are spaced     one degree apart. The blue triangles are the stations used in this paper,the red dots around the stations are the Moho transfer      points. The locations of the faults are shown in the solid gray lines. HTG:Hetao Basin,YCG:Yinchuan Basin,HL:       Helan Shan,YBL:Yabrai Shan,HHF:Huanghe fault,ZWPF:Zhuozi fault,DBF:Dengkou-Benjing fault

    图  18  定位前后地震事件分布及深度变化

    (a)定位前地震事件分布图;(b)定位后地震事件分布图;(c)定位前地震深度分布图;(d)定位后地震深度分布图

    Figure  18.  Spatial and depth distribution characteristics of earthquake events before and after earthquake location

         The spatial distributions of earthquake events before (a) and after (b) earthquake location;the depth distributions of                earthquake events before (c) and after (d) earthquake location

    图  19  运城盆地地区流动地震台阵和大地电磁阵列探测台站分布

            蓝色空心三角为新布设流动地震观测台站,蓝色和绿色实心三角为已有流动和固定地震台站,                红色和绿色圆圈为新布设和已有大地电磁测深测点

    Figure  19.  Distributions of mobile seismic arrays and magnetotelluric array detection stations in and around the Yuncheng Basin

    The new mobile seismic observation stations are shown in the blue hollow triangles;the existing mobile and fixed seismic stations are shown  in the blue and green solid triangles;the new and existing magnetotelluric array detection stations are shown in the red and green circles

    图  20  鄂尔多斯西南缘三维断裂结构模型(俯视图)

         不同颜色的小球代表不同的地表活动断裂,     不同颜色代表不同断裂在地下的断裂面

    Figure  20.  3-D fault model of the southwestern margin of the Ordos active block(top view)

      The colored spheres represent different active faults on the    surface,the different colors represent subsurface fault        geometries of different active faults

    图  21  不同各向异性条件下断层上地震的破裂过程模拟(改自文献 [51])

    (a)介质各向异性不均匀条件下破裂传播过程; (b)各向异性的不均匀性导致地震位错分布不对称; (c)PGA分布非对称性

    Figure  21.  Simulations of earthquake rupture processes under different anisotropic conditions(Modified from the reference [51])

         (a)the propagation process of earthquake rupture under different anisotropic conditions; (b)anisotropy leads to           asymmetric distribution of earthquake offsets; (c)asymmetric distribution of the PGA

    图  22  地块-断层运动学模型获得的海原—六盘山断层运动学参数

    (a)走向滑动速率; (b)倾向滑动速率; (c)耦合系数和; (d)滑移亏损速率

    Figure  22.  Kinematic parameters of Haiyuan-Liupanshan fault zone obtained from block-fault kinematic model

    (a)slip-rate along strike; (b)slip-rate along downdip; (c)the cumulative coupling coefficient; (d)the rate of slip deficit

  • [1] 张国民,张培震. 近年来大陆强震机理与预测研究的主要进展[J]. 中国基础科学,1999,1(2-4):47-58
    [2] 邓起东. 中国新生代断块构造的主要特征[C]. 国际交流地质学术论文集−为第26届地质大会撰写. 地质, 地质力学. 北京: 地质出版社, 1980: 101-108
    [3] 马杏垣. 中国岩石圈动力学图[M]. 北京: 地图出版社, 1989
    [4] 丁国瑜. 活动亚板块、构造块体相对运动[C]∥丁国瑜. 中国岩石圈动力学概论. 北京: 地震出版社, 1991: 142-153
    [5] 邓起东, 徐锡伟, 于贵华. 中国活动断裂的分区特征[C]∥中国地震学会地震地质专业委员会. 中国活动断层研究. 北京: 地震出版社, 1994: 1-14
    [6] 马瑾. 从断层中心论向块体中心论转变[J]. 地学前缘,1999,6(4):363-370 doi: 10.3321/j.issn:1005-2321.1999.04.020
    [7] 张培震. 中国大陆岩石圈最新构造变动与地震灾害[J]. 第四纪研究,1999(5):404-413 doi: 10.3321/j.issn:1001-7410.1999.05.003
    [8] 张培震,邓起东,张国民,等. 中国大陆强震活动与活动地块[J]. 中国科学D辑:地球科学,2003,33(增刊):12-20
    [9] 张培震,邓起东,张竹琪,等. 中国大陆的活动断裂、地震灾害及其动力过程[J]. 中国科学:地球科学,2013,43(10):1607-1620
    [10] Jordan T H. Lessons of L’Aquila for operational earthquake forecasting[J]. Seismol. Res. Lett.,2013,84(1):4-7 doi: 10.1785/0220120167
    [11] Aki K. Earthquake prediction,societal implications[J]. Reviews of Geophysics,1995,33(Supp):243-247
    [12] Wesnousky S G. Predicting the endpoints of earthquake ruptures[J]. Nature,2006,444(7117):358-360 doi: 10.1038/nature05275
    [13] Lorito S,Romano F,Atzori S,et al. Limited overlap between the seismic gap and coseismic slip of the great 2010 Chile earthquake[J]. Nature Geoscience,2011,4:173-177 doi: 10.1038/ngeo1073
    [14] Ruiz S,Madariaga R. Historical and recent large megathrust earthquakes in Chile[J]. Tectonophysics,2018,733:37-56 doi: 10.1016/j.tecto.2018.01.015
    [15] M7专项工作组. 中国大陆大地震中-长期危险性研究[M]. 北京: 地震出版社, 2012
    [16] McCaffrey R,Qamar A,King R W,et al. Fault locking,block rotation and crustal deformation in the Pacific Northwest[J]. Geophys. J. Inter.,2007,169(3):1315-1340 doi: 10.1111/j.1365-246X.2007.03371.x
    [17] Pulido N,Aguilar Z,Tavera H,et al. Scenario source models and strong ground motion for future mega-earthquakes:Application to lima,central peru[J]. Bull. Seismol. Soc. Amer.,2015,105(1):368-386 doi: 10.1785/0120140098
    [18] Shaw B E,Milner K,Field E H,et al. A physics-based earthquake simulator replicates seismic hazard statistics across California[J]. Science Advances,2018,4(8):1-9
    [19] Wells D,Coppersmith K J. New empirical relationships among magnitude,rupture length,rupture width,rupture area,and surface displacement[J]. Bull. Seismol. Soc. Amer.,1994,84(4):974-1002
    [20] Hanks T C,Bakun W H. A bilinear source-scaling model for M-log a observations of continental earthquakes[J]. Bull. Seismol. Soc. Amer.,2002,92(5):1841-1846 doi: 10.1785/0120010148
    [21] Biasi G P,Weldon R J. Estimating surface rupture length and magnitude of paleoearthquakes from point measurements of rupture displacement[J]. Bull. Seismol. Soc. Amer.,2006,96(5):1612-1623 doi: 10.1785/0120040172
    [22] Hanks T C,Bakun W H. M-logA observations for recent large earthquakes[J]. Bull. Seismol. Soc. Amer.,2008,98(1):490-494 doi: 10.1785/0120070174
    [23] Geller R J. Earthquake prediction:A critical review[J]. Geophys. J. Int.,1997,131(3):425-450 doi: 10.1111/j.1365-246X.1997.tb06588.x
    [24] Vere-Jones D. Forecasting earthquakes and earthquake risk[J]. International Journal of Forecasting,1995,11(4):503-538 doi: 10.1016/0169-2070(95)00621-4
    [25] Aki K. Synthesis of earthquake science information and its public transfer:A history of the southern California earthquake center[J]. International Geophysics,2002:39-49
    [26] Field E H. A summary of previous working groups on California earthquake probabilities[J]. Bull. Seismol. Soc. Amer.,2007,97(4):1033-1053 doi: 10.1785/0120060048
    [27] Field E H,Arrowsmith R,Biasi G P,et al. Uniform California earthquake rupture forecast,version 3 (UCERF3):The time-independent model[J]. Bull. Seismol. Soc. Amer.,2014,104(3):1122-1180 doi: 10.1785/0120130164
    [28] Field E H. How physics-based earthquake simulators might help improve earthquake forecasts[J]. Seismol. Res. Lett.,2019:467-472
    [29] 陈运泰. 地震预测:回顾与展望[J]. 中国科学D辑:地球科学,2009,30(12):1633-1658
    [30] 郑文俊,袁道阳,张培震,等. 青藏高原东北缘活动构造几何图像、运动转换与高原扩展[J]. 第四纪研究,2016,36(4):775-788 doi: 10.11928/j.issn.1001-7410.2016.04.01
    [31] 郑文俊,张培震,袁道阳,等. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报,2019(5):699-721 doi: 10.12090/j.issn.1006-6616.2019.25.05.062
    [32] 郑文俊,王庆良,袁道阳,等. 活动地块假说理论框架的提出、发展及未来需关注的科学问题[J]. 地震地质,2020,42(2):245-270
    [33] 张希,王双绪,张晓亮,等. 昆仑山与汶川强烈地震对青藏块体东北缘地壳运动及应变积累的影响[J]. 地球学报,2010,31(1):32-42
    [34] 王庆良,王文萍,崔笃信,等. 青藏块体东北缘现今地壳运动[J]. 大地测量与地球动力学,2002,22(4):12-16
    [35] Zhang P Z,Wen X Z,Shen Z K,et al. Oblique,high-angle,listric-reverse faulting and associated development of strain:The Wenchuan earthquake of May 12,2008,Sichuan,China[J]. Ann. Rev. Earth Planet. Sci.,2010,38:353-382 doi: 10.1146/annurev-earth-040809-152602
    [36] Hao M,Li Y H,Zhuang W Q. Crustal movement and strain distribution in east Asia revealed by GPS observations[J]. Scientific Reports,2019,9(1):16797 doi: 10.1038/s41598-019-53306-y
    [37] Li X N, Zhang P Z,Zheng W J,et al. Kinematics of late Quaternary slip along the Qishan-Mazhao fault:Implications for tectonic deformation on the southwestern Ordos, China[J]. Tectonics,2018,37(1):2983-3000
    [38] Zhang Y P, Zheng W J, Zhang D L, et al. Late Pleistocene left-lateral slip rates of the Gulang fault and its tectonic implications in eastern Qilian Shan (NE Tibetan Plateau), China[J]. Tectonophysics, 2019, 756: 97-111
    [39] 崔笃信,郝明,李煜航,等. 鄂尔多斯块体周缘地区现今地壳水平运动与应变[J]. 地球物理学报,2016,59(10):3646-3661 doi: 10.6038/cjg20161012
    [40] Zhao B,Zhang C H,Wang D Z,et al. Contemporary kinematics of the Ordos block,North China and its adjacent rift systems constrained by dense GPS observations[J]. Journal of Asian Earth Sciences,2017,135:257-267 doi: 10.1016/j.jseaes.2016.12.045
    [41] Wang M,Shen Z K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. J. Geophys. Res.:Solid Earth,2020:125
    [42] Hao M,Wang Q L,Shen Z K,et al. Present day crustal vertical movement inferred from precise leveling data in eastern margin of Tibetan Plateau[J]. Tectonophysics,2014,632:281-292 doi: 10.1016/j.tecto.2014.06.016
    [43] 李长军,柴旭超,甘卫军,等. 基于GPS观测的鄂尔多斯地块及其周缘现今的运动学特征[J]. 地震地质,2020,42(2):待发表
    [44] 高翔,郭飚,陈九辉,等. 地幔上涌对鄂尔多斯西缘岩石圈的改造:来自远震多尺度层析成像的证据[J]. 地球物理学报,2018,61(7):2736-2749 doi: 10.6038/cjg2018L0319
    [45] Guo B,Chen J H,Liu Q Y,et al. Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography[J]. Earth Planet. Phys.,2019,3(2):1-11
    [46] 陈一方,陈九辉,郭飚,等. 鄂尔多斯西缘北段的地壳结构和块体间变形关系[J]. 地球物理学报,2020,63(3):886-896 doi: 10.6038/cjg2020N0211
    [47] 詹慧丽,张冬丽,何骁慧,等. 基于地震活动特征的鄂尔多斯西缘现今构造变形模式的限定[J]. 地震地质,2020,42(2):待发表
    [48] Mallet J L. GOCAD: A computer aided design program for geological applications[C]. In: Turner A. K. (eds) Three-dimensional modeling with geoscientific information systems. NATO ASI Series (Series C: Mathematical and Physical Sciences), 1992, 354
    [49] McCalpin J. Geologic criteria for recognition of individual paleoseismic events in envtroments[R]. USGS Open File Report, 1987: 102-114
    [50] 毛凤英, 张培震. 古地震研究的逐次限定法与新疆北部主要断裂带的古地震研究[M]∥活动断裂研究(4). 北京: 地震出版社, 1995: 153-164
    [51] 张群伟,朱守彪. 断层两侧各向异性介质对地震破裂过程影响的有限单元法模拟研究[J]. 地球物理学报,2019,62(12):4706-4717 doi: 10.6038/cjg2019N0020
    [52] Field E H,Page M T. Estimating earthquake-rupture rates on a fault or fault system[J]. Bull. Seismol. Soc. Amer.,2011,101(1):79-92 doi: 10.1785/0120100004
    [53] McCaffrey R. Block kinematics of the Pacific-North America plate boundary in the southwestern United States from inversion of GPS,seismological,and geologic data[J]. J. Geophys. Res.,2005,110(B07401)
  • 加载中
图(22)
计量
  • 文章访问数:  572
  • HTML全文浏览量:  228
  • PDF下载量:  57
出版历程
  • 收稿日期:  2020-04-10
  • 修回日期:  2020-04-17
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回
    本系统由北京仁和汇智信息技术有限公司设计开发 百度统计