zhenbo

ISSN 2096-7780 CN 10-1665/P

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地幔水化及水在大火成岩省形成中的作用

LiuJia XiaQun-Ke KuritaniTakeshi HanskiEero YuHao-Ran 孙嘉祥

LiuJia, XiaQun-Ke, KuritaniTakeshi, HanskiEero, YuHao-Ran, 孙嘉祥. 地幔水化及水在大火成岩省形成中的作用[J]. 地震科学进展, 2019, (12): 46-53. doi: 10.3969/j.issn.0253-4975.2019.12.008
引用本文: LiuJia, XiaQun-Ke, KuritaniTakeshi, HanskiEero, YuHao-Ran, 孙嘉祥. 地幔水化及水在大火成岩省形成中的作用[J]. 地震科学进展, 2019, (12): 46-53. doi: 10.3969/j.issn.0253-4975.2019.12.008
Mantle hydration and the role of water in the generation of large igneous provinces[J]. Progress in Earthquake Sciences, 2019, (12): 46-53. doi: 10.3969/j.issn.0253-4975.2019.12.008
Citation: Mantle hydration and the role of water in the generation of large igneous provinces[J]. Progress in Earthquake Sciences, 2019, (12): 46-53. doi: 10.3969/j.issn.0253-4975.2019.12.008

地幔水化及水在大火成岩省形成中的作用

doi: 10.3969/j.issn.0253-4975.2019.12.008
详细信息
    通讯作者:

    Liu Jia,e-mail:liujia08@ustc.edu.cn

    孙嘉祥,e-mail:sunjiaxiang17@mails.ucas.ac.cn

  • 中图分类号: P315

Mantle hydration and the role of water in the generation of large igneous provinces

  • 摘要: 大火成岩省的形成受控于多种因素,包括异常的地幔温度、易熔饱满组分的存在、地幔源中的挥发分和减压的程度。在一个具体大火成岩省中,所有的因素缺少完整的检验导致了地幔柱模型存在争议。这里,我们报道了估算的来自中国西南峨眉山大火成岩省的辉石中水的含量。尽管这些辉石表现出类岛弧的水含量(达到3.4%),微量元素特征并不支持俯冲带的设定但是指示了深处地幔的含水储层。结合之前的研究,我们提出含水的热地幔在显生宙偶尔出现制造了大陆大火成岩省(例如:塔里木、西伯利亚圈闭和卡鲁)。地幔柱形成深处地幔含水储层的广泛例子表明,地球内部大范围水化。

     

  • 图  1  大理苦橄岩与其他不同地质背景下原始岩浆中水含量的比较。大洋玄武岩和科马提岩的水丰度数据来源于文献[26-28],补充数据3给出了其他LIPs的数据来源。大理苦橄岩数据来自本研究。NMORB为正常洋中脊玄武岩;EMORB为富集型洋中脊玄武岩;OIB为洋岛玄武岩;BABB为弧后盆地玄武岩;CRB为哥伦比亚河玄武岩;SRPB为蛇河平原玄武岩

    图  2  科马提岩,LIPs和OIBs源区的水含量,H2O/Ce比和估计的最大地幔潜在温度的比较。(a)源区中水含量由原始岩浆中水含量计算而来(科马提岩和LIPs的数据来源与图1中的相同),假定部分熔融程度和水在地幔岩(橄榄岩或辉石岩)和岩浆中的分配系数。(b)请参阅补充文件以获取H2O/Ce比率计算的详细信息。(c)所有的Tp已经对水的影响进行了校正,参见方法中的计算和补充数据3。太古宙-元古宙界线和平均MORB地幔的Tp范围来自于文献[6,34]。所有的误差线代表2个标准偏差。Gorgona科马提岩和Tortugal苦橄岩来自加勒比大火成岩省(CLIP);西伯利亚AR苦橄岩,Ayan河苦橄岩,Gd苦橄岩,Gudchikhinsky苦橄岩;SLC,夏威夷盐湖火山口的辉石岩捕虏体,数据来自Bizimis和Peslier[38]。夏威夷和其他OIB源区的含水量和H2O/Ce比率来自于Bizimis和Peslier[38]及其中的文献。基于Herzberg等[40],对水的影响进行校正后,夏威夷和其他OIBs的Tp来自Herzberg[4]。CRB为哥伦比亚河玄武岩,SRPB为蛇河平原玄武岩

    图  3  大火成岩省和科马提岩的H2O/Ce和原始岩浆中辉石岩源熔体比例之间的相互关系。Xpx值的计算基于橄榄石斑晶的Fe/Mn比率。Xpx和H2O/Ce的误差线分别代表一个和两个标准偏差。对全球MORB和夏威夷辉石岩捕虏体(SCL)[38]的H2O/Ce比率也进行了比较。辉石岩来源的熔体H2O/Ce比率与辉石源相当,如果部分熔融程度大于10%,达到了地幔柱范围。绿色方框表示来自深部地幔不饱满但含水储存体的潜在熔体,地幔过渡带(mantle transition zone,MTZ)橄榄岩或俯冲蛇纹石化橄榄岩的H2O/Ce。夏威夷苦橄岩和MORB的Xpx用Sobolev等[20]的数据计算而来。关于Xpx和H2O/Ce的计算,参见补充数据3。请注意,某些样品的H2O/Ce的误差线小于符号的大小。Gd表示Gudchikhinsky;SRP表示蛇河平原

  • [1] Campbell I H,Griffihs R W. Implications of mantle plume structure for the evolution of flood basalts[J]. Earth Planet. Sci. Lett.,1991,99(1-2):79-93
    [2] Sobolev S V,Sobolev A V,Kuzmin D V,et al. Linking mantle plumes,large igneous provinces and environmental catastrophes[J]. Nature,2011,477(7364):312-316 doi: 10.1038/nature10385
    [3] Campbell I H. Large igneous provinces and the mantle plume hypothesis[J]. Elements,2005,1(5):265-269 doi: 10.2113/gselements.1.5.265
    [4] Herzberg C,Gazel E. Petrological evidence for secular cooling in mantle plumes[J]. Nature,2009,458(7238):619-622 doi: 10.1038/nature07857
    [5] Anderson D L. Large igneous provinces,delamination,and fertile mantle[J]. Elements,2005,1(5):271-275 doi: 10.2113/gselements.1.5.271
    [6] Ivanov A V. Why volatiles are required for cratonic flood basalt volcanism:Two examples from the Siberian craton[J]. Geol. Soc. Am. Spec. Pap.,2015,514:325-338
    [7] Foulger G R. Plates vs Plumes: A Geological Controversy[M]. New Jersey: Wiley-Blackwell, 2010
    [8] Sobolev A V,Krivolutskaya N A,Kuzmin D V. Petrology of the parental melts and mantle sources of Siberian trap magmatism[J]. Petrology,2009,17(3):253-285 doi: 10.1134/S0869591109030047
    [9] Ivanov A. High water in meimechites of the Siberian traps LIP[C]. Goldschmid Abstract 1795. https://goldschmidt.info/2017/abstracts/abstractView?id=2017001546
    [10] Xia Q. High water content in primitive continental flood basalts[J]. Sci. Rep.,2016,6:25416 doi: 10.1038/srep25416
    [11] Chung S L,Jahn B M. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary[J]. J. Petrol.,1995,36(4):889-892 doi: 10.1130/0091-7613(1995)023<0889:PLIIGO>2.3.CO;2
    [12] Xu Y G,Chung S L,Jahn B M,et al. Petrologic and geochemical constraints on the petrogenesis of Permian: Triassic Emeishan flood basalts in southwestern China[J]. Lithos,2001,58(3):145-168
    [13] Zhang Z C,Mahoney J J,Mao J W,et al. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province,China:Evidence for a plume-head origin[J]. J. Petrol.,2006,47(10):1997-2019 doi: 10.1093/petrology/egl034
    [14] Hanski E,Kamenetsky V S,Luo Z Y,et al. Primitive magmas in the Emeishan large Igneous Province,southwestern China and northern Vietnam[J]. Lithos,2010,119(1-2):75-90 doi: 10.1016/j.lithos.2010.04.008
    [15] Kamenetsky V S,Chung S L,Kamenetsky M B,et al. Picrites from the Emeishan large Igneous Province,SW China:A compositional continuum in primitive magmas and their respective mantle sources[J]. J. Petrol.,2012,53(10):2095-2113 doi: 10.1093/petrology/egs045
    [16] Ren Z Y,Wu Y D,Zhang L,et al. Primary magmas and mantle sources of Emeishan basalts constrained from major element,trace element and Pb isotope compositions of olivine-hosted melt inclusions[J]. Geochim. Cosmochim. Acta,2015,208:63-85
    [17] He B,Xu Y G,Chung S L,et al. Sedimentary evidence for a rapid,kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts[J]. Earth Planet. Sci. Lett.,2003,213(3-4):391-405 doi: 10.1016/S0012-821X(03)00323-6
    [18] Peate I U,Bryan S E. Re-evaluating plume-induced uplift in the Emeishan large igneous province[J]. Nat. Geosci.,2008,1(9):625-629 doi: 10.1038/ngeo281
    [19] Wang X,Wilde S,Pang C. Origin of arc-like continental basalts:Implications for deep-Earth fluid cycling and tectonic discrimination[J]. Lithos,2016,261:5-45 doi: 10.1016/j.lithos.2015.12.014
    [20] Sobolev A V,Hofmann A W,Kuzmin D V,et al. The amount of recycled crust in sources of mantle-derived melts[J]. Science,2007,316(5823):412-417 doi: 10.1126/science.1138113
    [21] Wade J A,Plank T,Hauri E H,et al. Prediction of magmatic water contents via measurement of H2O in clinopyroxene phenocrysts[J]. Geology,2008,36(10):799-802 doi: 10.1130/G24964A.1
    [22] Xia Q K,Liu J,Liu S C,et al. High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere[J]. Earth Planet. Sci. Lett.,2013,361:85-97
    [23] Weis F A,Skogby H,Troll V R,et al. Magmatic water contents determined through clinopyroxene:Examples from the Western Canary Islands,Spain[J]. Geochem. Geophys. Geosyst.,2015,16(7):2127-2146 doi: 10.1002/2015GC005800
    [24] Maria A H,Luhr J F. Lamprophyres,basanites,and basalts of the Western Mexican Volcanic Belt:Volatile contents and a vein-wallrock melting relationship[J]. J. Petrol.,2008,49(12):2123-2156 doi: 10.1093/petrology/egn060
    [25] Pilet S,Baker M B,Stolper E M. Metasomatized lithosphere and the origin of alkaline lavas[J]. Science,2008,320(5878):916-919 doi: 10.1126/science.1156563
    [26] Sobolev A V,Asafov E V,Gurenko A A,et al. Komatiites reveal a hydrous Archaean deep-mantle reservoir[J]. Nature,2016,531(7596):628-632 doi: 10.1038/nature17152
    [27] Shimizu K,Komiya T,Hirose K,et al. Cr-spinel,an excellent micro-container for retaining primitive melts-implications for a hydrous plume origin for komatiites[J]. Earth Planet. Sci. Lett.,2001,189(3-4):177-188 doi: 10.1016/S0012-821X(01)00359-4
    [28] Gurenko A A,Kamenetsky V S,Kerr A C. Oxygen isotopes and volatile contents of the Gorgona komatiites,Colombia:A confirmation of the deep mantle origin of H2O[J]. Earth Planet. Sci. Lett.,2016,454:154-165 doi: 10.1016/j.jpgl.2016.08.035
    [29] Hauri E H,Gaetani G A,Green T H. Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions[J]. Earth Planet. Sci. Lett.,2006,248(3-4):715-734 doi: 10.1016/j.jpgl.2006.06.014
    [30] Kogiso T,Hirose K,Takahashi E. Melting experiments on homogeneous mixtures of peridotite and basalt:Application to the genesis of ocean island basalts[J]. Earth Planet. Sci. Lett.,1998,162(1-4):45-61 doi: 10.1016/S0012-821X(98)00156-3
    [31] Trela J,Gazel E,Sobolev A V,et al. The hottest lavas of the Phanerozoic and the survival of deep Archaean reservoirs[J]. Nat. Geosci.,2017,10(6):451-456 doi: 10.1038/ngeo2954
    [32] Herzberg C,Asimow P D. PRIMELT3 MEGA. XLSM software for primary magma calculation:Peridotite primary magma MgO contents from the liquidus to the solidus[J]. Geochem. Geophys. Geosyst.,2015,16(2):563-578 doi: 10.1002/2014GC005631
    [33] Matzen A K,Wood B J,Baker M B,et al. The roles of pyroxenite and peridotite in the mantle sources of oceanic basalts[J]. Nat. Geosci.,2017,10(7):530-535 doi: 10.1038/ngeo2968
    [34] Niu Y,Wilson M,Humphreys E R,et al. The origin of intra-plate ocean island basalts(OIB):The lid effect and its geodynamic implications[J]. J. Petrol.,2011,52(7/8):1443-1468
    [35] Howarth G H,Harris C. Discriminating between pyroxenite and peridotite sources for continental flood basalts(CFB)in southern Africa using olivine chemistry[J]. Earth Planet. Sci. Lett.,2017,475:143-151 doi: 10.1016/j.jpgl.2017.07.043
    [36] Zamboni D,Trela J,Gazel E,et al. New insights into the Aeolian Islands and other arc source compositions from high-precision olivine chemistry[J]. Lithos,2017,273:185-191
    [37] Sobolev A V,Sobolev S V,Kuzmin D V,et al. Siberian meimechites:origin and relation to flood basalts and kimberlites[J]. Russ. Geol. Geophys.,2009,50(12):999-1033 doi: 10.1016/j.rgg.2009.11.002
    [38] Bizimis M,Peslier A H. Water in Hawaiian garnet pyroxenites:Implications for water heterogeneity in the mantle[J]. Chem. Geol.,2015,397:61-75 doi: 10.1016/j.chemgeo.2015.01.008
    [39] Kendrick M A,Hémond C,Kamenetsky V S,et al. Seawater cycled throughout Earth’s mantle in partially serpentinized lithosphere[J]. Nat. Geosci.,2017,10:222-228 doi: 10.1038/ngeo2902
    [40] Herzberg C. Petrological evidence from komatiites for an early Earth carbon and water cycle[J]. J. Petrol.,2016,57(11/12):2271-2287
    [41] Pearson D G,Brenker F E,Nestola F,et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond[J]. Nature,2014,507(7491):221-224 doi: 10.1038/nature13080
    [42] Garnero E J,McNamara A K,Shim S H. Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle[J]. Nat. Geosci.,2016,9(7):481-489 doi: 10.1038/ngeo2733
    [43] Herzberg C,Condie K,Korenaga J. Thermal history of the Earth and its petrological expression[J]. Earth Planet. Sci. Lett.,2010,292(1-2):79-88 doi: 10.1016/j.jpgl.2010.01.022
    [44] Korenaga J, Planavsky N J, Evans D A D. Global water cycle and the coevolution of the Earth’s interior and surface environment[J]. Philos. Trans. A Math. Phys. Eng. Sci., 2017, 375(2094). doi.org/10.1098/rsta.2015.0393
  • 加载中
图(3)
计量
  • 文章访问数:  580
  • HTML全文浏览量:  174
  • PDF下载量:  20
出版历程
  • 收稿日期:  2017-12-15
  • 修回日期:  2018-05-10
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回
    本系统由北京仁和汇智信息技术有限公司设计开发 百度统计