Creeping faults:Good news,bad news?
-
摘要: 地球构造板块运动驱动断层滑动。一些断层会以地震的形式快速破裂,释放大量能量;另一些断层则以更加平稳的方式滑动,从而缓慢的释放能量。后者就是所谓的蠕滑断层,通常被认为地震危险性较小,但是越来越多的证据表明它们比先前认识的更为复杂,依然具有显著的致灾性。Harris[
1 ]最新的一篇综述报道了全球范围内浅层大陆断层带蠕滑断层的地震潜力。本文通过对已有的研究进行全面的回顾,重点关注了何时、何地,为什么发生断层蠕滑,以及哪些情况下断层蠕滑可能代表着高地震危险性,并对未来工作方向提出一些建议。 -
图 1 加利福尼亚伯克利海沃德蠕滑断层
彩色圆圈表示1992—2001年利用European RemoteSensing(ERS-1/ERS-2)卫星进行卫星雷达干涉测量的地表运动。红线是断层地表迹线,两边不同颜色的圆圈可以反映其蠕滑行为。断层西侧红色圆圈标记的快速运动区域位于活动滑坡体上[2]。右下方箭头所指的椭圆区域是位于加州大学伯克利分校的伯克利纪念体育场,该处断层蠕滑速率约为5 mm/a,约是其长期滑动速率的一半(原图为彩图)
图 2 台湾东部快速蠕滑的池上断层(界定着纵谷和海岸山脉)地貌图
断层以2—3 cm/a的速度滑动,是世界上滑动速度最快的陆内逆冲蠕滑断层。东侧的逆冲断层由上盘的利吉混杂岩和下盘河流沉积物分开。沿着池上断裂,断层蠕滑造成公共设施管道(1和2)、道路(3)以及砖墙(4)的损坏。池上断裂的地表蠕滑正通过蠕变仪来监测[3](图中1和2)(原图为彩图)
-
[1] Harris R A. Large earthquakes and creeping faults[J]. Rev. Geophys.,2017,55(1):169-198 doi: 10.1002/2016RG000539 [2] Hilley G E,Bürgmann R,Ferretti A,et al. Dynamics of slow-moving landslides from permanent scatterer analysis[J]. Science,2004,304(5679):1952-1955 doi: 10.1126/science.1098821 [3] Lee J -C,Angelier J,Chu H -T,et al. Active fault creep variations at Chihshang,Taiwan,revealed by creep meter monitoring,1998—2001[J]. J. Geophys. Res.,2003,108(B11):2528 doi: 10.1029/2003JB002394 [4] Avouac J P. From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle[J]. Annu. Rev. Earth Planet. Sci.,2015,43(1):233-271 doi: 10.1146/annurev-earth-060614-105302 [5] Noda H,Lapusta N. Stable creeping fault segments can become destructive as a result of dynamic weakening[J]. Nature,2013,493(7433):518-521 doi: 10.1038/nature11703 [6] Kohli A H,Goldsby D L,Hirth G,et al. Flash weakening of serpentinite at near-seismic slip rates[J]. J. Geophys. Res.,2011,116(B3):B03202 doi: 10.1029/2010JB007833 [7] Proctor B P,Mitchell T M,Hirth G,et al. Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates[J]. J. Geophys. Res. Solid Earth,2014,119(11):8107-8131 doi: 10.1002/2014JB011057 [8] Uchida N,Shimamura K,Matsuzawa T,et al. Postseismic response of repeating earthquakes around the 2011 Tohoku-oki earthquake:Moment increases due to the fast loading rate[J]. J. Geophys. Res. Solid Earth,2015,120(1):259-274 doi: 10.1002/2013JB010933 [9] Chaussard E,Bürgmann R,Fattahi H,et al. Interseismic coupling and refined earthquake potential on the Hayward-Calaveras fault zone[J]. J. Geophys. Res. Solid Earth,2015,120(12):8570-8590 doi: 10.1002/2015JB012230 [10] Thomas M Y,Avouac J -P,Champenois J,et al. Spatiotemporal evolution of seismic and aseismic slip on the Longitudinal Valley Fault,Taiwan[J]. J. Geophys. Res. Solid Earth,2014,119(6):5114-5139 doi: 10.1002/2013JB010603 [11] Bouchon M,Durand V,Marsan D,et al. The long precursory phase of most large interpolate earthquakes[J]. Nat. Geosci.,2013,6(4):299-302 doi: 10.1038/ngeo1770 [12] Uchida N,Iinuma T,Nadeau R M,et al. Periodic slow slip triggers megathrust zone earthquakes in northeastern Japan[J]. Science,2016,351(6272):488-492 doi: 10.1126/science.aad3108 [13] Obara K,Kato A. Connecting slow earthquakes to huge earthquakes[J]. Science,2016,353(6296):253-257 doi: 10.1126/science.aaf1512 -