zhenbo

ISSN 2096-7780 CN 10-1665/P

基于XGBoost的地磁秒数据尖峰干扰修正方法研究

Research on a Spike Interference Correction Method for 1-Second Geomagnetic Sampling Data Based on XGBoost

  • 摘要: 尖峰干扰是地磁秒采样数据的最常见干扰类型之一,处理是否恰当影响了地磁秒采样观测数据质量。现有的中值平均法需要大量人工操作,且在应对干扰持续时间大于1秒的干扰时适应性受限。为了对尖峰干扰数据进行更加准确的修正,本研究将数据修正问题建模为机器学习回归任务,提出了基于XGBoost的地磁秒采样数据尖峰干扰修正模型。选用2024年1月至2025年4月满洲里地震观测站自动化地磁台站系统Z分量原始观测数据,提取17 720条尖峰干扰时刻及前后磁场变化样本作为数据集训练模型。模型在测试集上的均方误差、均方根误差、平均绝对误差和决定系数分别达到了0.011 667 nT2、0.104 742 nT、0.076 582 nT和0.999 852。结果表明XGBoost模型在地磁秒采样尖峰干扰修正中具有优异的性能,为解决地磁秒采样数据尖峰干扰的自动化、高精度修正问题提供了有效的新方法。

     

    Abstract: Spike interference is one of the most common types of disturbance in 1-second geomagnetic sampling data, and its proper handling directly affects the quality of 1-second geomagnetic observations. Conventional methods, such as the median average approach require extensive manual intervention and exhibit limited adaptability when addressing interference lasting longer than one second. To achieve more accurate correction of spike interference, this study formulates the data correction task as a machine learning regression problem and proposes an XGBoost-based model for correcting spike disturbances in 1-second geomagnetic sampling data. Using raw observational data from the Z-component of the automated geomagnetic station system at the Manzhouli Seismic Observatory between January 2024 and April 2025, 17 720 samples of magnetic field variations—during and around spike interference events—were extracted to construct the dataset for model training. The model achieved the following performance metrics on the test set: Mean Squared Error (MSE) of 0.011 667 nT2, Root Mean Squared Error (RMSE) of 0.104 742 nT, Mean Absolute Error (MAE) of 0.076 582 nT, and Coefficient of Determination (R2) of 0.999 852. The results demonstrate the excellent performance of the XGBoost model in correcting spike interference in 1-second geomagnetic sampling data, providing an effective new method for automated and high-precision correction of such disturbances.

     

/

返回文章
返回