zhenbo

ISSN 2096-7780 CN 10-1665/P

地震信号时频分析方法研究综述

A review of time-frequency analysis for seismic signal

  • 摘要: 时频分析是地震资料处理的关键技术,随着地震勘探的深入,对高分辨率时频分析的需求日益迫切。本文综述了近年来时频分析方法的发展历程,首先探讨了传统方法的局限性,如时间分辨率和频率分辨率的权衡。随后,从分数域和压缩感知两个维度出发,详细阐述了时频分析的最新进展。分数阶时频分析通过引入分数阶概念,提供了更精细的时频表示,有助于揭示地震信号的复杂特征。压缩感知理论则利用信号的稀疏性,通过优化算法实现信号重建与时频表示。此外,本文还阐述了基于深度学习的地震信号时频分析的研究现状、优势及不足。深度学习方法在稀疏时频分析、去噪、信号增强及储层预测等方面展现出强大的表征能力和泛化性能,为地震勘探领域带来了新的突破。最后,本文对当前地震勘探领域中的时频分析方法进行了总结,并对未来的发展方向进行了展望,以期为推动地震勘探技术的发展提供有益的参考。

     

    Abstract: Time-frequency analysis is vital in seismic data processing, and the need for high-resolution technique intensifying as exploration advances. This paper traces the evolution of time-frequency methodologies beginning with the inherent limitations of traditional methods, particularly between temporal and spectral resolution. Recent progress is examined along two major fronts: fractional-domain analysis and compressive sensing. Fractional-order methods introduce fractional calculus to achieve more nuanced representation of seismic signals, thereby exposing their complex structural attributes compressive sensing theory uses signal sparsity algorithms optimization to enable efficient reconstruction and enhanced time-frequency characterization. In parallel, deep learning has emerged as a transformative tool, offering robust representation and generalization capabilities for sparse analysis, denoising, signal enhancement, and reservoir prediction. These advances mark significant breakthroughs in seismic exploration. This paper concludes with a synthesis of current methodologies and a perspective on future research directions, aiming to provide comprehensive reference for the continued development of seismic exploration technologies.

     

/

返回文章
返回