zhenbo

ISSN 2096-7780 CN 10-1665/P

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于支持向量机上海地区土体物理力学指标相关性研究

李志国 白瑞涵 刘旭进 王庶懋

李志国, 白瑞涵, 刘旭进, 王庶懋. 基于支持向量机上海地区土体物理力学指标相关性研究[J]. 地震科学进展, 2023, 53(2): 66-76. doi: 10.19987/j.dzkxjz.2022-166
引用本文: 李志国, 白瑞涵, 刘旭进, 王庶懋. 基于支持向量机上海地区土体物理力学指标相关性研究[J]. 地震科学进展, 2023, 53(2): 66-76. doi: 10.19987/j.dzkxjz.2022-166
Li Zhiguo, Bai Ruihan, Liu Xujin, Wang Shumao. Correlations between physical and mechanical property indexes of Shanghai soil based on support vector machine[J]. Progress in Earthquake Sciences, 2023, 53(2): 66-76. doi: 10.19987/j.dzkxjz.2022-166
Citation: Li Zhiguo, Bai Ruihan, Liu Xujin, Wang Shumao. Correlations between physical and mechanical property indexes of Shanghai soil based on support vector machine[J]. Progress in Earthquake Sciences, 2023, 53(2): 66-76. doi: 10.19987/j.dzkxjz.2022-166

基于支持向量机上海地区土体物理力学指标相关性研究

doi: 10.19987/j.dzkxjz.2022-166
基金项目: “基于数据挖掘技术的岩土工程勘察设计管理及优化平台研究”(GSKJ2-G02-2019)资助。
详细信息
    作者简介:

    李志国(1983-),男,高级工程师,主要从事岩土工程勘察工作。E-mail:2564@ecepdi.com

    通讯作者:

    王庶懋(1978-),男,高级工程师,主要从事岩土工程勘察及岩土工程设计工作。E-mail:2431@ecepdi.com

  • 中图分类号: TU431

Correlations between physical and mechanical property indexes of Shanghai soil based on support vector machine

  • 摘要:

    针对上海地区土体物理力学指标开展相关性分析,结合多个工程场地获取的土体室内试验数据,采用支持向量机算法构建了土体塑性指数、液性指数与压缩系数的相关性分析模型,并结合误差指标对模型参数进行优化。将支持向量机模型与传统的线性、多项式拟合方法结果对比分析,表明该模型预测结果与实际结果较为吻合,且该模型另一优势在于能够从更多的数据中进行更深度的挖掘来提升自身的鲁棒性。考虑到不同土体的工程性质差异较大,进一步研究该模型的预测性能与适用性,就每个测试样本点预测偏差与其物理指标建立二者的关系曲线,结果表明可塑性小的中压缩性土体相较于高压缩性土体的预测偏差更小,模型更加稳定与准确,可为上海地区土体压缩性相关研究提供参考。

     

  • 图  1  相关性散点图

    Figure  1.  Correlation scatter plot

    图  2  不同输入变量预测结果的对比分析

    Figure  2.  Comparisive analysis of forecast results for different input variables

    图  3  不同核函数预测结果的对比分析

    Figure  3.  Comparisive analysis of forecast results for different kernel functions

    图  4  不同误差项惩罚系数预测结果的对比分析

    Figure  4.  Comparisive analysis of forecast results of penalty coefficients of different error item

    图  5  不同方法的压缩系数预测结果对比分析

    Figure  5.  Comparisive analysis of prediction results of compression coefficients by different methods

    图  6  不同数量数据集下支持向量机与拟合方法的对比分析

    Figure  6.  Comparative analysis of support vector machine and fitting methods in different datasets

    图  7  不同物理指标的预测偏差

    Figure  7.  Forecast bias of different physical indexes

    图  8  基于压缩系数的预测偏差变化

    Figure  8.  Variation of forecast bias based on compression coefficients

    表  1  土的物理力学指标统计

    Table  1.   Statistics of physical and mechanical indexes of soil

    土体类型统计量物理力学指标参数值
    最小值最大值平均值标准差变异系数
    淤泥质粘土221压缩系数a1-2/MPa−10.661.600.840.270.32
    含水量w/%24.4063.4042.936.540.15
    塑限WP/%17.0031.3022.802.920.13
    液限WL/%26.5053.9037.426.100.16
    塑性指数IP9.4022.8014.623.380.23
    液性指数IL0.522.571.410.320.23
    湿密度ρ/(cm·s−31.621.971.760.060.03
    土粒比重Gs2.712.752.730.010.0039
    粘土31压缩系数a1-2/ MPa−10.210.980.570.220.39
    含水量w/%24.0052.6036.227.660.21
    塑限WP/%16.5027.5022.172.550.12
    液限WL/%30.5048.1037.644.570.12
    塑性指数IP10.8020.6015.472.410.16
    液性指数IL0.351.930.920.430.47
    湿密度ρ/(cm·s−31.702.021.870.100.05
    土粒比重Gs2.722.752.730.010.0037
    粉质粘土198压缩系数a1-2/ MPa−10.071.280.410.210.51
    含水量w/%18.2052.0030.976.270.20
    塑限WP/%15.0031.0021.462.400.11
    液限WL/%25.4053.8035.154.630.13
    塑性指数IP9.0022.8013.682.610.19
    液性指数IL-0.311.840.720.410.57
    湿密度ρ/(cm·s−31.672.101.900.090.05
    土粒比重Gs2.712.752.730.010.0037
    砂质粉土137压缩系数a1-2/ MPa−10.100.830.390.180.46
    含水量w/%19.9046.4031.515.010.16
    塑限WP/%13.0025.7020.142.440.12
    液限WL/%22.4043.4030.293.450.11
    塑性指数IP7.1017.7010.151.910.19
    液性指数IL0.351.901.100.330.30
    湿密度ρ/(cm·s−31.732.031.840.070.04
    土粒比重Gs2.692.742.710.010.0025
    下载: 导出CSV

    表  2  不同输入变量预测结果误差对比

    Table  2.   Error comparison of forecast results for different input variables

    输入变量误差指数
    R2MAERMSEMSE
    塑性指数、液性指数 0.860 0.116 0.144 0.021
    塑性指数 0.525 0.212 0.265 0.070
    液性指数 0.228 0.269 0.338 0.114
    下载: 导出CSV

    表  3  不同核函数预测结果误差对比

    Table  3.   Error comparison of forecast results for different kernel functions

    核函数误差指数
    R2MAERMSEMSE
    RBF 0.886 0.100 0.130 0.017
    多项式 0.876 0.109 0.136 0.018
    线性 0.86 0.116 0.144 0.021
    下载: 导出CSV

    表  4  不同误差项惩罚系数预测结果误差对比

    Table  4.   Error comparison of forecast results of penalty coefficients of different error item

    误差项惩罚系数C误差指数
    R2MAERMSEMSE
    5 0.903 0.094 0.120 0.014
    1 0.886 0.100 0.130 0.017
    0.5 0.873 0.105 0.137 0.019
    下载: 导出CSV

    表  5  不同方法的压缩系数预测结果误差对比

    Table  5.   Error comparison of prediction results of compression coefficients by different methods

    算法误差指数
    R2MAERMSEMSE
    SVR算法 0.911 0.08 0.115 0.013
    线性拟合 0.859 0.118 0.144 0.021
    多项式拟合 0.892 0.101 0.127 0.016
    下载: 导出CSV

    表  6  不同物理指标预测结果误差对比

    Table  6.   Error comparison of prediction results for different physical indexes

    指标变化范围误差指标
    MAERMSEMSE
    塑限WP16—200.0710.0800.006
    20—260.0820.1110.012
    26—320.1290.0230.151
    液限WL25—350.0670.0800.006
    35—450.1040.1410.020
    45—550.1220.1440.021
    塑性指数IP7.5—12.50.0640.0790.006
    12.5—17.50.0810.1080.012
    17.5—22.50.1300.1580.025
    液性指数IL0.2—0.70.0690.0870.008
    0.7—1.20.1070.1330.018
    1.2—1.80.0940.1220.015
    下载: 导出CSV

    表  7  中高压缩性土预测结果误差对比

    Table  7.   Error comparison of prediction results of medium and high compressible soil

    土体类型误差指数
    MAERMSEMSE
    中压缩性土 0.069 0.085 0.007
    高压缩性土 0.120 0.150 0.023
    下载: 导出CSV
  • [1] Koppula S D. Statistical estimation of compression index[J]. Geotechnical Testing Journal,1981,4(2):68-73 doi: 10.1520/GTJ10768J
    [2] Rendon-Herrero O. Universal compression index equation[J]. Journal of Geotechnical & Geoenvironmental Engineering,1980,106(11):1179-1200
    [3] Schofield A, Wroth P. Critical state soil mechanics[M]. London: Mcgraw Hill, 1968
    [4] Nakase A,Kamei T,Kusakabe O. Constitutive parameters estimated by plasticity index[J]. Journal of Geotechnical Engineering,1988,114(7):844-858 doi: 10.1061/(ASCE)0733-9410(1988)114:7(844)
    [5] Azzouz A S,Krizek R J,Corotis R B. Regression analysis of soil compressibility[J]. Soils and Foundations,1976,16(2):19-29 doi: 10.3208/sandf1972.16.2_19
    [6] 刘吉福,高玉峰. 广东软粘土物理力学指标相关性分析[J]. 路基工程,2013(2):47-52 doi: 10.3969/j.issn.1003-8825.2013.02.012

    Liu J F,Gao Y F. Analysis on correlation of physical and mechanical indices of soft clay in Guangdong[J]. Subgrade Engineering,2013(2):47-52 doi: 10.3969/j.issn.1003-8825.2013.02.012
    [7] 赵孝旗,周翔,康怀信,等. 杭州地区海相软土物理力学指标相关性分析[J]. 路基工程,2021(5):30-34 doi: 10.13379/j.issn.1003-8825.202101092

    Zhao X Q,Zhou X,Kang H X,et al. Analysis on correlation of physical and mechanical indexes of marine soft soil in Hangzhou area[J]. Subgrade Engineering,2021(5):30-34 doi: 10.13379/j.issn.1003-8825.202101092
    [8] 刘伽,朱斌,段磊,等. 大连黏性土压缩指数与物理指标相关性分析[J]. 土木工程与管理学报,2018,35(3):118-123 doi: 10.3969/j.issn.2095-0985.2018.03.019

    Liu J,Zhu B,Duan L,et al. Correlation analysis between compression index and physical parameters of Dalian clayey soils[J]. Journal of Civil Engineering and Management,2018,35(3):118-123 doi: 10.3969/j.issn.2095-0985.2018.03.019
    [9] 涂春霖,尹林虎,顾亚. 云南遮放盆地粉质黏土物理力学指标相关性分析[J]. 矿产勘查,2021,12(9):1979-1984 doi: 10.3969/j.issn.1674-7801.2021.09.016

    Tu C L,Yin L H,Gu Y. Correlation analysis on physical and mechanical indexes of the silty clay in Zhefang Basion of Yunnan Province[J]. Mineral Exploration,2021,12(9):1979-1984 doi: 10.3969/j.issn.1674-7801.2021.09.016
    [10] 白冰,周健,章光. 饱和软黏土的塑性指数对其压缩变形参数的影响[J]. 水利学报,2001,32(11):51-55 doi: 10.3321/j.issn:0559-9350.2001.11.009

    Bai B,Zhou J,Zhang G. Effect of plasticity index of saturated soft clay on its deformation parameters[J]. Journal of Hydraulic Engineering,2001,32(11):51-55 doi: 10.3321/j.issn:0559-9350.2001.11.009
    [11] 李晨晨,徐世光,吴静. 昆明市南市区软土内摩擦角与各物理指标之间的相关关系分析[J]. 科学技术与工程,2014,14(3):243-245 doi: 10.3969/j.issn.1671-1815.2014.03.053

    Li C C,Xu S G,Wu J. The analysis of the correlativity between the internal frictional angle and physical parameter of the soft soil in the south city,Kunming,Yunnan Province[J]. Science Technology and Engineering,2014,14(3):243-245 doi: 10.3969/j.issn.1671-1815.2014.03.053
    [12] 孙毅力,于洪民. 北京区域土的压缩性与物理指标相关性分析[J]. 地震工程学报,2015,37(增刊1):26-29

    Sun Y L,Yu H M. Correlation analysis of the compressibility and physical indices of soils in Beijing[J]. China Earthquake Engineering Journal,2015,37(S1):26-29
    [13] 李旭昶,孙德安,徐永福. 扬州土物理与力学性质指标的相关性分析[J]. 工程地质学报,2019,27(2):333-340 doi: 10.13544/j.cnki.jeg.2017-486

    Li X C,Sun D A,Xu Y F. Study on correlations of physical and mechanical property indexes of Yangzhou clays[J]. Journal of Engineering Geology,2019,27(2):333-340 doi: 10.13544/j.cnki.jeg.2017-486
    [14] 丁祖德,付江,李夕松,等. 昆明泥炭质土的物理力学指标特征及相关性分析[J]. 公路工程,2018,43(4):86-91 doi: 10.3969/j.issn.1674-0610.2018.04.018

    Ding Z D,Fu J,Li X S,et al. Properties of physical and mechanical indexes and correlation analysis of peaty soil in Kunming area[J]. Highway Engineering,2018,43(4):86-91 doi: 10.3969/j.issn.1674-0610.2018.04.018
    [15] 张鹤. 基于软土常规物理参数的压缩模量预测研究[J]. 铁道建筑技术,2019(1):1-5,49 doi: 10.3969/j.issn.1009-4539.2019.01.001

    Zhang H. Prediction study on compression modulus of soft soil based on conventional physical parameters[J]. Railway Construction Technology,2019(1):1-5,49 doi: 10.3969/j.issn.1009-4539.2019.01.001
    [16] 蒋建平,阎长虹,高广运. 地基土压缩系数的RBF神经网络预测[J]. 江苏大学学报(自然科学版),2011,32(2):232-235,248 doi: 10.3969/j.issn.1671-7775.2011.02.023

    Jiang J P,Yan C H,Gao G Y. Prediction on compressibility coefficient of soil based on RBF neural network[J]. Journal of Jiangsu University (Natural Science Edition),2011,32(2):232-235,248 doi: 10.3969/j.issn.1671-7775.2011.02.023
    [17] Zhang D M,Zhang J Z,Huang H W,et al. Machine learning-based prediction of soil compression modulus with application of 1D settlement[J]. Journal of Zhejiang University-Science A:Applied Physics & Engineering,2020,21(6):430-444
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  15
  • PDF下载量:  18
出版历程
  • 收稿日期:  2022-11-16
  • 录用日期:  2022-12-26
  • 网络出版日期:  2023-01-06

目录

    /

    返回文章
    返回
    本系统由北京仁和汇智信息技术有限公司设计开发 百度统计