Design of groundwater level prediction system based on BP neural network
-
摘要: 为了解四川德阳地下水位动态,进而分析地震前兆动态,本文设计了一个基于BP神经网络的地下水位预测系统。采用SWY-Ⅱ数字式水位仪对德阳地下水位数据进行采集。根据采集的2015年水位数据,利用BP神经网络对地下水位变化进行预测,以一年的采集数据进行训练和测试,采用3个输入节点、1个输出节点设计了BP神经网络结构。为了进一步验证本预测系统,本文对2017年7月1日—10月26日地下水位情况进行了预测。实验表明:该方案能有效实现地下水位的预测,为地震前兆工作提供可靠数据。Abstract: In order to understand the dynamic of groundwater level and master the earthquake precursor dynamic, we designed groundwater level prediction system based on BP neural network. According to the groundwater level of Deyang, Sichuan Province, SWY-II digital water level meter is used to collect the groundwater level data of Deyang. Based on the collected water level data in 2015, the BP neural network is used to predict the change of groundwater level, and the data collected for one year are trained and tested. The structure of BP neural network is designed with three input nodes and one output node. In order to further validate the proposal, the groundwater level from July 1 to October 26, 2017 is predicted. The experiment shows that the scheme can predict groundwater level effectively and provide reliable data for earthquake precursor work.
-
Key words:
- MCU /
- BP neural network /
- predict
-
表 1 选取6次地震的基本参数
Table 1. Basic parameters of 6 selected earthquakes
发震时刻
(年-月-日 时:分)北纬/° 东经/° 深度/km MS 参考地点 2017-07-17 06:55 32.370 105.330 21 4.9 四川青川 2017-08-08 21:19 33.150 103.800 20 7.0 四川九寨沟 2017-08-09 10:17 33.100 103.850 20 4.8 四川九寨沟 2017-08-10 05:05 33.150 103.860 20 4.3 四川九寨沟 2017-09-12 19:26 27.900 101.450 10 4.4 四川木里 2017-09-30 14:14 32.250 105.050 10 5.4 四川青川 -
[1] 郭浩然,李映,黄鹤程. 抽水蓄能电站地下水位预测的优化神经网络模型[J]. 水利信息化,2022(3):40-45Guo H R,Li Y,Huang H C. Optimized neural network model for groundwater level prediction in pumped-storage power stations[J]. Water Resources Informatization,2022(3):40-45 [2] 陈亮. 地下水在工程地质勘察中的重要性分析[J]. 绿色环保建材,2021(5):153-154Cheng L. Study on the importance of groundwater in engineering geological investigation[J]. Green Building Materials,2021(5):153-154 [3] 汪成民. 中国地震地下水动态网的科学创新与应用前景[J]. 地震学刊,1991,11(3):4-8Wang C M. Scientific originalities and applications of the groundwater observation well-network for earthquake prediction in China[J]. Journal of Seismology,1991,11(3):4-8 [4] Gogu R,Carabin G,Hallet V,et al. GIS-based hydrogeological databases and groundwater modelling[J]. Hydrogeology Journal,2001,9(6):555-569 doi: 10.1007/s10040-001-0167-3 [5] Kushwaha R K,Pandit M K,Goyal R. MODFLOW based groundwater resource evaluation and prediction in Mendha sub-basin,NE Rajasthan[J]. Journal of Geological Society of India,2009,74(4):449-458 doi: 10.1007/s12594-009-0154-1 [6] Pandey V P,Shrestha S,Kazama F. Groundwater in the Kathmandu Valley:Development dynamics,consequences and prospects for sustainable management[J]. European Water,2012,37:3-14 [7] 许骥. 基于遗传BP神经网络的地下水位预测模型[J]. 地下水,2015,37(3):19-21 doi: 10.3969/j.issn.1004-1184.2015.03.008Xu J. Groundwater level prediction model based on genetic BP neural network[J]. Ground Water,2015,37(3):19-21 doi: 10.3969/j.issn.1004-1184.2015.03.008 [8] 喻黎明,严为光,龚道枝,等. 基于ELM模型的浅层地下水位埋深时空分布预测[J]. 农业机械学报,2017,48(2):215-223 doi: 10.6041/j.issn.1000-1298.2017.02.029Yu L M,Yan W G,Gong D Z,et al. Temporal and spatial distribution prediction of shallow groundwater level based on ELM model[J]. Transactions of the Chinese Society of Agricultural Machinery,2017,48(2):215-223 doi: 10.6041/j.issn.1000-1298.2017.02.029 [9] Tran V T,Le Van P,Huynh V H. Groundwater level prediction using Artificial Neural Networks:A case study in Tra Noc Industrial Zone,Can Tho city,Vietnam[J]. Journal of Water Resource and Protection,2018,10(9):870-883 doi: 10.4236/jwarp.2018.109050 -