A method to estimate the microseismic magnitude based on vector scanning
-
摘要: 对地震记录中显著可视事件震级的确定,已有如里氏震级、矩震级、不同定义的震级之间的关联、震级与能量之间的关系等成熟方法。然而,由于微地震事件记录常淹没在背景噪声中,无法实施包括确定震级在内的传统定位。为比较不同类型不同地域的微震大小、研究微震机制及诱发原因、使用其安全预警等,我们外延里氏震级到微震范畴,定义了等效里氏微震震级:根据微破裂向量扫描输出的无量纲能量或最小信噪比,估计一定时空中单位时间单位台站所接收的在时空目标一点上的等效能量和震级。文中列出了目前我们在微震监测中发现的几类微震的大小规模。Abstract: The magnitude of a seismic event can be estimated by measuring seismic energy, seismic moment, and relationship between the energy and seismic magnitude (M), etc. However, it is impossible to traditionally locate a microseismic event, including determining its magnitude, because its records are submerged in the background noise in most of cases. Comparing the microseismic magnitudes at different regions and with different causes, studying their mechanisms, we first extend the definition of the Richter magnitude to the microseismic range. Then, based on the scanning output of the minimum ratio of signal-to-noise in the available vector processing for microseismic monitoring, we estimate their equivalent Richter magnitude. The microseismic magnitudes induced by different causes are compared.
-
Key words:
- microseismic /
- Richter magnitude /
- microseismic monitoring /
- vector processing /
- signal-to-noise ratio
-
表 1 基于公式(7)的能量E与震级M(M=[−3, 3])的数值关系
Table 1. Numerical relationship between energy E and magnitude M in a range of [−3, 3] based on formula (7)
震级 能量/J E/E0 相应参考 3.0 2 000 000 000 31 700 2.5 350 000 000 5 560 2.0 63 000 000 1 000 数千米内,人有感 1.5 11 000 000 175 1.0 2 000 000 31.7 0.5 350 000 5.56 0.0 63 000 1.00 数千米内,检波器显著有感 −0.5 11 000 0.175 步枪 −1.0 2 000 0.031 7 −1.5 350 0.005 56 手枪 −2.0 63 0.001 00 −2.5 11 0.000 175 气枪 −3.0 2 0.000 031 7 注:E0为M=0的能量。此表的最右一列也参考了文献[9]和[11] 表 2 由式(7)和平均能量得到的几种不同类别的微震等效能级平均震级
Table 2. Equivalent Richter magnitudes of some available microseismic styles from formula (7) and average energy
微震类别 平均
能量/J等效里氏震级 最小 最大 平均 煤矿采空区垮塌诱发 2 670 −3.3 −0.2 −0.9 煤矿采空区垮塌诱发
(顶板几十米岩体事先压裂过)1 380 −2.7 0.1 −1.1 油井注热水预处理 18 −2.1 −1.5 −1.8 煤矿顶板压裂 13 −3.2 −1.8 −2.5 油井压裂 10 −3.7 −1.8 −2.8 -
[1] Gutenberg B,Richter C F. Frequency of earthquakes in California[J]. Bulletin of the Seismological Society of America,1944,34(4):185-188 doi: 10.1785/BSSA0340040185 [2] 熊峰,杨彦明,庞博,等. 基于重力观测的巴颜喀拉块体强震震级模拟分析[J]. 地震科学进展,2021,51(11):481-488Xiong F,Yang Y M,Pang B,et al. Simulation analysis of strong earthquake magnitude in Bayankala block based on gravity observation[J]. Progress in Earthquake Sciences,2021,51(11):481-488 [3] Gutenberg B, Richter C F. Seismicity of the Earth and associated phenomena[M]. Princeton, New Jersey: Princeton University Press, 1954 [4] Aki K, Richards P G. Quantitative seismology: Theory and methods[M]. San Francisco: W. H. Freeman and Company, 1980 [5] 傅淑芳, 刘宝诚, 李文艺. 地震学教程 (北京大学地球物理系)[M]. 北京: 地震出版社, 1980Fu S F, Liu B C, Li W Y. Tutorial of seismology (Department of Geophysics, Peking University)[M]. Beijing: Seismological Press, 1980 [6] Kasahara K. Earthquake mechanics[M]. Cambridge: Cambridge University Press, 1981 [7] Bullen K E, Bolt B. An introduction to the theory of seismology[M]. Cambridge: Cambridge University Press, 1985 [8] 孟晓春. 地震信息分析技术[M]. 北京: 地震出版社, 2005Meng X C. Analysis of seismological data[M]. Beijing: Seismological Press, 2005 [9] Maxwell S. Microseismic imaging of hydraulic fracturing: Improved engineering of unconventional shale reservoirs (Distinguished Instructor Series No. 17)[M]. Oklahoma: Society of Exploration Geophysicists, 2014 [10] Baig A,Urbancic T,Viegas G,et al. Can small events (M<0) observed during hydraulic fracture stimulations initiate large events (M>0)?[J]. The Leading Edge,2012,31(12):1470-1474 doi: 10.1190/tle31121470.1 [11] 梁北援,王建立. 对微地震监测的最大挑战:目标特性不明[J]. 科学技术与工程,2018,18(13):14-21 doi: 10.3969/j.issn.1671-1815.2018.13.003Liang B Y,Wang J L. An enormous challenge:Understanding the microseismic features[J]. Science Technology and Engineering,2018,18(13):14-21 doi: 10.3969/j.issn.1671-1815.2018.13.003 [12] Gibowicz S J, Kijko A. An introduction to mining seismology[M]. San Diego: Academic Press, Inc, 1994 [13] 梁兵, 朱广生. 油气田勘探开发中的微震监测方法[M]. 北京: 石油工业出版社, 2004Liang B, Zhu G S. Microseismic technology in exploration and development[M]. Beijing: Petroleum Industry Press, 2004 [14] Shapiro S. Microseismicity-A tool for reservoir characterization[M]. Houten: European Association of Geoscientists & Engineers, 2008 [15] Grechka V, Heigl W M. Microseismic monitoring[M]. Oklahoma: Society of Exploration Geophysicists, 2017 [16] 梁北援,沈琛,冷传波,等. 微地震压裂监测技术研发进展[J]. 地球物理学进展,2015,30(1):401-410 doi: 10.6038/pg20150158Liang B Y,Shen C,Leng C B,et al. Development of microseismic monitoring for hydro-fracturing[J]. Progress in Geophysics,2015,30(1):401-410 doi: 10.6038/pg20150158 [17] 沈琛,梁北援,李宗田. 微破裂向量扫描技术原理[J]. 石油学报,2009,30(5):744-748Shen C,Liang B Y,Li Z T. Principle of vector scanning technique for micro-fractures[J]. Acta Petrolei Sinica,2009,30(5):744-748 [18] Zhou Y, Liang B, Ma L, et al. Vector scanning: hydro-fracture monitoring with surface microseismic data[C]. Copenhagen: European Association of Geoscientists & Engineers, 2012: SPE-152913 [19] Zhang Q, Ren Z, Zheng B, et al. Hydro-fracture monitoring using vector scanning with surface microseismic data[C]. Istanbul, Turkey, 2014: AAPG-1948512 [20] Zhang Q, Ren Z, Zheng B, et al. Hydro-fracture monitoring for 86 stages of Yan227 in Shengli oil field[C]//SEG 1st International Microseismic Technology Workshop. Asheville, USA, 2014 [21] Shen C, Wu Z, Lu J, et al. Vector scanning: Instruments and seismic network[C]//SEG 1st International Microseismic Technology Workshop. Asheville, USA, 2014 [22] 梁北援,冷传波. 微破裂向量扫描原理的研发进展[J]. 地球物理学进展,2016,31(4):1620-1627 doi: 10.6038/pg20160428Liang B Y,Leng C B. Development of vector scanning for microseismic[J]. Progress in Geophysics,2016,31(4):1620-1627 doi: 10.6038/pg20160428 [23] 梁北援,徐力,冷传波,等. 微破裂向量扫描技术的野外数据采集[J]. 地球物理学进展,2016,31(5):2333-2339Liang B Y,Xu L,Leng C B,et al. Data acquisition of vector scanning for microseismic[J]. Progress in Geophysics,2016,31(5):2333-2339 [24] 梁北援,程百利,吴壮坤,等. 微破裂向量扫描技术的自动化数据处理[J]. 地球物理学进展,2017,32(1):377-386 doi: 10.6038/pg20170154Liang B Y,Cheng B L,Wu Z K,et al. Data processing automatically in vector scanning for microseismic[J]. Progress in Geophysics,2017,32(1):377-386 doi: 10.6038/pg20170154 [25] 梁北援,王会卿. 微破裂向量扫描压裂在微震监测中的解释原则[J]. 地球物理学进展,2019,34(4):1314-1322 doi: 10.6038/pg2019DD0224Liang B Y,Wang H Q. Interpretation of vector scanning for microseismic[J]. Progress in Geophysics,2019,34(4):1314-1322 doi: 10.6038/pg2019DD0224 [26] 郭鹏,呼赞同,贾金赟,等. 微破裂向量扫描在丰探15井压裂微震实时监测中的应用[J]. 地球物理学进展,2020,35(4):1370-1378 doi: 10.6038/pg2020DD0461Guo P,Hu Z T,Jia J Y,et al. Application to the hydraulic fracture of well FT15 by real-time monitoring using vector processing for microseismic[J]. Progress in Geophysics,2020,35(4):1370-1378 doi: 10.6038/pg2020DD0461 [27] 桑林翔,杨果,于兵,等. 风城油田重油SAGD蒸汽腔微震监测[J]. 地球物理学进展,2021,36(1):237-249 doi: 10.6038/pg2021DD0475Sang L X,Yang G. Yu B,et al. Microseismic monitoring for steam cavities of SAGD,Fengcheng oil field[J]. Progress in Geophysics,2021,36(1):237-249 doi: 10.6038/pg2021DD0475 [28] 张军,赵琛,王建立,等. 不同倾角煤层气井的水力压裂微震监测[J]. 地球物理学进展,2021,36(3):1166-1175 doi: 10.6038/pg2021DD0538Zhang J,Zhao C,Wang J L,et al. Microseismic monitoring for hydraulic fracture of coalbeds with different dips[J]. Progress in Geophysics,2021,36(3):1166-1175 doi: 10.6038/pg2021DD0538 [29] 赵超峰,张伟,田建涛,等. 微破裂向量扫描在L606-6井压裂微震监测中的应用[J]. 科学技术与工程,2021,21(4):1279-1287 doi: 10.3969/j.issn.1671-1815.2021.04.005Zhao C F,Zhang W,Tian J T,et al. An application of vector processing on the hydraulic fracture of well L606-6[J]. Science Technology and Engineering,2021,21(4):1279-1287 doi: 10.3969/j.issn.1671-1815.2021.04.005 [30] 房大志,谷红陶,钱劲,等. NC区块页岩气水平井压裂微震实时监测[J]. 地球物理学进展,2022,37(2):577-587 doi: 10.6038/pg2022FF0177Fang D Z,Gu H T,Qian J,et al. Real-time microseismic monitoring for the hydraulic fracture of horizontal wells at NC block[J]. Progress in Geophysics,2022,37(2):577-587 doi: 10.6038/pg2022FF0177 [31] 梁北援,常力,房大志,等. 微地震及其监测综述−走向基于低信噪比的微破裂向量扫描[J]. 地球物理学进展,2023,38(1):47-75Liang B Y,Chang L,Fang D Z,et al. Introduction to microseismic and its monitoring:Toward vector scanning of microseismic based on lower signal to noise ratio[J]. Progress in Geophysics,2023,38(1):47-75 [32] Sheriff R E. Encyclopedic dictionary of exploration geophysics [M]. 3rd Edition. Tulsa: Society of Exploration Geophysics, 1991 [33] Press W H, Teukolsky S A, Vetterling W T, et al. Numerical recipes in C: The art of scientific computing[M]. 2nd Edition. New York: Cambridge University Press, 1997 [34] 程乾生. 数字信号处理[M]. 北京: 北京大学出版社, 2003Cheng Q S. Digital signal processing[M]. Beijing: Peking University Press, 2003 [35] Robinson E A, Treitel S. Geophysical signal processing[M]. Tulsa: Society of Exploration Geophysics, 2000 [36] Albright J N, Pearson C F. Locations of hydraulic fractures using microseismic techniques[C]//Annual SPE Meeting, 1980, Dallas. Dallas: European Association of Geoscientists & Engineers, 1980: SPE-9505 [37] Pearson C. The relationship between microseismicity and high pore pressure during hydraulic stimulation experiments in low permeability granitic rocks[J]. Journal of Geophysical Research,1981,86(B9):7855-7864 doi: 10.1029/JB086iB09p07855 [38] Murphy H D, Fehler, M C. Hydraulic fracturing of jointed formations[C]//International Meeting on Petroleum Engineering. Society of Petroleum Engineers, 1986: SPE-14088 -

计量
- 文章访问数: 64
- HTML全文浏览量: 64
- PDF下载量: 16