zhenbo

ISSN 2096-7780 CN 10-1665/P

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南中国海区域海啸预警中心地震监测系统

徐志国 史健宇 李宏伟 王宗辰

徐志国, 史健宇, 李宏伟, 王宗辰. 南中国海区域海啸预警中心地震监测系统[J]. 地震科学进展, 2022, (10): 473-481. doi: 10.19987/j.dzkxjz.2022-053
引用本文: 徐志国, 史健宇, 李宏伟, 王宗辰. 南中国海区域海啸预警中心地震监测系统[J]. 地震科学进展, 2022, (10): 473-481. doi: 10.19987/j.dzkxjz.2022-053
Xu Zhiguo, Shi Jianyu, Li Hongwei, Wang Zongchen. The earthquake monitoring system in the South China Sea Tsunami Advisory Center[J]. Progress in Earthquake Sciences, 2022, (10): 473-481. doi: 10.19987/j.dzkxjz.2022-053
Citation: Xu Zhiguo, Shi Jianyu, Li Hongwei, Wang Zongchen. The earthquake monitoring system in the South China Sea Tsunami Advisory Center[J]. Progress in Earthquake Sciences, 2022, (10): 473-481. doi: 10.19987/j.dzkxjz.2022-053

南中国海区域海啸预警中心地震监测系统

doi: 10.19987/j.dzkxjz.2022-053
基金项目: 自然资源部“中印尼海洋与气候中心发展”项目(2029999001)资助。
详细信息
    作者简介:

    徐志国(1979-),男,高级工程师,主要从事地震学与海啸预警技术研究。E-mail:xuzhg04@sina.com

    通讯作者:

    史健宇(1991-),男,工程师,主要从事地震监测与海啸预警预报工作。E-mail:shijy@nmefc.cn

  • 中图分类号: P315.61

The earthquake monitoring system in the South China Sea Tsunami Advisory Center

  • 摘要: 简要介绍了南中国海区域海啸预警与减灾系统的建设和发展历程,同时重点阐述了地震监测系统构成及其基本功能。作为重要组成部分,地震监测系统通过地震数据的实时汇集、存储、自动处理和分析,并结合人机交互方式实现了地震定位、震源机制解和有限断层模型反演。实际应用表明,地震监测系统对全球6.0级以上地震定位时间不超过8 min,在震后10—15 min内完成W震相方法快速反演海底强震震源机制解,在震后短时间内完成有限断层模型反演,为海啸预警提供快速、准确、可靠的地震基本参数和震源特征参数。

     

  • 图  1  南中国海区域海啸预警中心预警责任区

    Figure  1.  The areas of responsibility for tsunami warning service of the South China Sea Tsunami Advisory Center

    图  2  全球和区域地震台网

    Figure  2.  The global and regional seismic networks

    图  3  2019年1—12月全球6级以上地震震源机制解。黑色线为全球主要板块边界[17]

    Figure  3.  The focal mechanism solutions of global earthquakes with M>6.0 from January to December 2019. The black lines are the boundaries of major plates in the world[17]

    图  4  马鲁古海地震震中位置和震源机制解

    Figure  4.  The epicenter location and focal mechanism solutions of Molucca Sea earthquake

    图  5  马鲁古海地震有限断层模型

    Figure  5.  Finite fault model of the Molucca Sea earthquake

    表  1  SCSTAC震后不同时间得到的马鲁古海MW7.1地震震源参数

    Table  1.   The source parameters of the MW7.1 Molucca Sea earthquake determined by SCSTAC at different time after origin time

    震后
    时间
    /min
    节面Ⅰ 节面 Ⅱ深度/kmMW台数沙滩球
    走向角
    倾角
    滑动角
    走向角
    倾角
    滑动角
    821948107 14457223.57.110
    102254511610516723.57.116
    122214910914457023.57.135
    152175210217407523.57.160
    下载: 导出CSV
  • [1] Athukorala P,Resosudarmo B P. The Indian Ocean tsunami:Economic impact,disaster management,and lessons[J]. Asian Economic Papers,2005,4(1):1-39 doi: 10.1162/asep.2005.4.1.1
    [2] Wang X M,Liu P L F. An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami[J]. Journal of Hydraulic Research,2006,44(2):147-154 doi: 10.1080/00221686.2006.9521671
    [3] 杨马陵. 地震海啸监测预警现状与进展[J]. 华南地震,2005,25(2):22-29 doi: 10.3969/j.issn.1001-8662.2005.02.003

    Yang M L. Actuality and headway of surveillance and warning for earthquake tsunami[J]. South China Journal of Seismology,2005,25(2):22-29 doi: 10.3969/j.issn.1001-8662.2005.02.003
    [4] Liu P L F,Wang X M,Salisbury A J. Tsunami hazard and early warning system in South China Sea[J]. Journal of Asian Earth Sciences,2009,36(1):2-12 doi: 10.1016/j.jseaes.2008.12.010
    [5] Baeda A Y. Seismic and tsunami hazard potential in Sulawesi Island,Indonesia[J]. Journal of International Development and Cooperation,2011,17(1):17-30
    [6] Mardi N H,Malek M A,Liew M S. Tsunami simulation due to seaquake at Manila Trench and Sulu Trench[J]. Natural Hazards,2017,85(3):1723-1741 doi: 10.1007/s11069-016-2661-x
    [7] 徐志国, 梁姗姗, 邹立晔, 等. SeisComP3地震监测软件系统及其在海啸预警系统建设中的应用[J]. 科技导报, 2017, 35(7): 88-92

    Xu Z G, Liang S S, Zou L Y, et al. SeisComP3 and its technical support and application to the tsunami warning system[J]. Science & Technology Review, 2017, 35(7): 88-92
    [8] 李宏伟,徐志国,王宗辰,等. 地震监测系统在我国海啸预警业务中的应用[J]. 海洋预报,2018,35(2):1-7 doi: 10.11737/j.issn.1003-0239.2018.02.001

    Li H W,Xu Z G,Wang Z C,et al. Application of seismic monitoring system in the tsunami warning of China[J]. Marine Forecasts,2018,35(2):1-7 doi: 10.11737/j.issn.1003-0239.2018.02.001
    [9] 徐志国,邹立晔,梁姗姗,等. SeisComP3地震实时监测与自动处理系统[J]. 国际地震动态,2016(9):16-24 doi: 10.3969/j.issn.0235-4975.2016.09.004

    Xu Z G,Zou L Y,Liang S S,et al. SeisComP3:A real-time monitoring and automatic processing system for earthquakes[J]. Recent Developements in World Seismology,2016(9):16-24 doi: 10.3969/j.issn.0235-4975.2016.09.004
    [10] Tsuboi S,Whitmore P M,Sokolowski T J. Application of MWP to deep and teleseismic earthquakes[J]. Bulletin of the Seismological Society of America,1999,89(5):1345-1351 doi: 10.1785/BSSA0890051345
    [11] Bormann P,Saul J. A fast,non-saturating magnitude estimator for great earthquakes[J]. Seismological Research Letters,2009,80(5):808-816 doi: 10.1785/gssrl.80.5.808
    [12] Kanamori H,Rivera L. Source inversion of W phase:Speeding up seismic tsunami warning[J]. Geophysical Journal International,2008,175(1):222-238 doi: 10.1111/j.1365-246X.2008.03887.x
    [13] Hayes G P,Rivera L,Kanamori H. Source inversion of the W-Phase:Real-time implementation and extension to low magnitudes[J]. Seismological Research Letters,2009,80(5):817-822 doi: 10.1785/gssrl.80.5.817
    [14] 梁姗姗,徐志国,黄志斌,等. 2019年秘鲁北部M7.8地震的矩张量解与破裂过程快速反演[J]. 中国地震,2020,36(1):23-33 doi: 10.3969/j.issn.1001-4683.2020.01.003

    Liang S S,Xu Z G,Huang Z B,et al. Fast inversion of focal mechanism and rupture process of 2019 M7.8 earthquake in Northern Peru[J]. Earthquake Research in China,2020,36(1):23-33 doi: 10.3969/j.issn.1001-4683.2020.01.003
    [15] Dziewonski A M,Anderson D L. Preliminary reference Earth model[J]. Physics of the Earth and Planetary Interiors,1981,25(4):297-356 doi: 10.1016/0031-9201(81)90046-7
    [16] Woodhouse J H. The calculation of the eigenfrequencies and eigenfunctions of the free oscillations of the Earth and Sun[M]//Doombos D J . Seismological algorithms: Computational methods and computer programs. London: Academic Press, 1988: 321-370
    [17] Bird P. An updated digital model of plate boundaries[J]. Geochemistry,Geophysics,Geosystems,2003,4(3):1027
    [18] Okada Y. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America,1985,75(4):1135-1154 doi: 10.1785/BSSA0750041135
    [19] Rabinovich A B,Lobkovsky L I,Fine I V,et al. Near-source observations and modeling of the Kuril Islands tsunamis of 15 November 2006 and 13 January 2007[J]. Advances in Geosciences,2008,14:105-116 doi: 10.5194/adgeo-14-105-2008
    [20] Yamazaki Y,Cheung K F,Lay T. Modeling of the 2011 Tohoku near-field tsunami from finite-fault inversion of seismic waves[J]. Bulletin of the Seismological Society of America,2013,103(2B):1444-1455 doi: 10.1785/0120120103
    [21] Weinstein S A,Lundgren P R. Finite fault modeling in a tsunami warning center context[J]. Pure and Applied Geophysics,2008,165(3/4):451-474
    [22] Kikuchi M,Kanamori H. Inversion of complex body waves[J]. Bulletin of the Seismological Society of America,1982,72(2):491-506
    [23] Kikuchi M,Kanamori H. Inversion of complex body waves—III[J]. Bulletin of the Seismological Society of America,1991,81(6):2335-2350 doi: 10.1785/BSSA0810062335
    [24] Kikuchi K. Note on teleseismic body-wave inversion program[EB/OL]. (2006-03-16)[2022-06-30]. http: //www.eri.u-tokyo.ac.jp/ETAL/KIKUCHI/
    [25] Kikuchi M,Kanamori H,Satake K. Source complexity of the 1988 Armenian earthquake:Evidence for a slow after-slip event[J]. Journal of Geophysical Research:Solid Earth,1993,98(B9):15797-15808 doi: 10.1029/93JB01568
    [26] Kennett B L N. Theoretical reflection seismograms for elastic MEDIA[J]. Geophysical Prospecting,1979,27(2):301-321 doi: 10.1111/j.1365-2478.1979.tb00972.x
    [27] Kennett B L N,Engdahl E R,Buland R. Constraints on seismic velocities in the Earth from traveltimes[J]. Geophysical Journal International,1995,122(1):108-124 doi: 10.1111/j.1365-246X.1995.tb03540.x
    [28] 徐志国,张怀,周元泽,等. 2018年12月1日美国阿拉斯加MW7.0地震震源参数及破裂过程[J]. 地震地质,2019,41(5):1223-1238 doi: 10.3969/j.issn.0253-4967.2019.05.010

    Xu Z G,Zhang H,Zhou Y Z,et al. The source parameters and rupture process of the MW7.0 earthquake in Alaska,USA on December 1,2018[J]. Seismology and Geology,2019,41(5):1223-1238 doi: 10.3969/j.issn.0253-4967.2019.05.010
    [29] 徐志国,王君成,王宗辰,等. 2019年11月14日印尼马鲁古海7.1级地震的震源机制及海啸数值模拟[J]. 地震地质,2020,42(6):1417-1431 doi: 10.3969/j.issn.0253-4967.2020.06.010

    Xu Z G,Wang J C,Wang Z C,et al. Focal mechanism and tsunami numerical simulation of the November 14,2019 Molucca Sea MW7.1 earthquake[J]. Seismology and Geology,2020,42(6):1417-1431 doi: 10.3969/j.issn.0253-4967.2020.06.010
    [30] Newman A V,Okal E A. Teleseismic estimates of radiated seismic energy:The E/M0 discriminant for tsunami earthquakes[J]. Journal of Geophysical Research:Solid Earth,1998,103(B11):26885-26898 doi: 10.1029/98JB02236
    [31] Wang D,Kawakatsu H,Zhuang J C,et al. Automated determination of magnitude and source length of large earthquakes using backprojection and P wave amplitudes[J]. Geophysical Research Letters,2017,44(11):5447-5456 doi: 10.1002/2017GL073801
    [32] Lomax A,Michelini A. Tsunami early warning using earthquake rupture duration and P-wave dominant period:The importance of length and depth of faulting[J]. Geophysical Journal International,2011,185(1):283-291 doi: 10.1111/j.1365-246X.2010.04916.x
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  111
  • PDF下载量:  29
出版历程
  • 收稿日期:  2022-03-24
  • 修回日期:  2022-04-25
  • 网络出版日期:  2022-07-10

目录

    /

    返回文章
    返回
    本系统由北京仁和汇智信息技术有限公司设计开发 百度统计