zhenbo

ISSN 2096-7780 CN 10-1665/P

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双向地震作用下液化水平和倾斜场地-桩基-桥梁结构地震反应的差异研究

苏卓林 贾科敏 许成顺 豆鹏飞 张小玲

苏卓林, 贾科敏, 许成顺, 豆鹏飞, 张小玲. 双向地震作用下液化水平和倾斜场地-桩基-桥梁结构地震反应的差异研究[J]. 地震科学进展, 2022, (11): 505-512. doi: 10.19987/j.dzkxjz.2022-026
引用本文: 苏卓林, 贾科敏, 许成顺, 豆鹏飞, 张小玲. 双向地震作用下液化水平和倾斜场地-桩基-桥梁结构地震反应的差异研究[J]. 地震科学进展, 2022, (11): 505-512. doi: 10.19987/j.dzkxjz.2022-026
Su Zhuolin, Jia Kemin, Xu Chengshun, Dou Pengfei, Zhang Xiaoling. Study on the difference of seismic responses of liquefied horizontal and inclined site-pile foundation-bridge structures under bidirectional earthquake excitations[J]. Progress in Earthquake Sciences, 2022, (11): 505-512. doi: 10.19987/j.dzkxjz.2022-026
Citation: Su Zhuolin, Jia Kemin, Xu Chengshun, Dou Pengfei, Zhang Xiaoling. Study on the difference of seismic responses of liquefied horizontal and inclined site-pile foundation-bridge structures under bidirectional earthquake excitations[J]. Progress in Earthquake Sciences, 2022, (11): 505-512. doi: 10.19987/j.dzkxjz.2022-026

双向地震作用下液化水平和倾斜场地-桩基-桥梁结构地震反应的差异研究

doi: 10.19987/j.dzkxjz.2022-026
基金项目: 国家自然科学基金面上项目:倾斜液化场地的侧向流动扩展机制及桩土动力相互作用研究(52078016)资助
详细信息
    作者简介:

    苏卓林(1997-),男,硕士研究生,主要从事岩土地震工程研究。E-mail:576207067@qq.com

    通讯作者:

    许成顺(1977-),女,教授,主要从事岩土力学基础理论与实验技术、土动力学与岩土地震工程研究。E-mail:xuchengshun@bjut.edu.cn

  • 中图分类号: P315.8

Study on the difference of seismic responses of liquefied horizontal and inclined site-pile foundation-bridge structures under bidirectional earthquake excitations

  • 摘要: 根据已经完成的液化侧向扩展场地-群桩基础-上部结构体系大型振动台试验,在有限元软件OpenSees中建立了可液化倾斜场地振动台试验的有限元模型。通过与试验结果对比,验证了数值模型的可靠性。基于此,建立了典型水平和倾斜液化场地-桩基-桥梁结构体系的数值模型,讨论了双向地震作用下水平和倾斜场地体系地震响应的差异,结果表明:相比水平场地,倾斜场地超孔隙水压力在峰值阶段波动幅度更大,土体的侧向位移增加明显,尤其是在饱和砂土中部位置;倾斜场地中桩基础的破坏程度更大,可液化层中部桩基曲率最大可增大约13倍,桩身水平位移显著增加;而水平场地桥墩曲率比倾斜场地桥墩曲率大,建议在液化场地桩基设计中应考虑场地倾斜带来的影响。

     

  • 图  1  振动台试验模型

    Figure  1.  Shaking table test model

    图  2  振动台试验传感器布置图

    Figure  2.  Layout of shaking table test sensor

    图  3  底部输入加速度时程

    Figure  3.  Acceleration time histories of base input

    图  4  振动台有限元模型

    Figure  4.  Finite element model of shaking table

    图  5  孔压比时程曲线对比

    Figure  5.  Comparison of pore pressure ratio time history curves

    图  6  土体水平加速度时程对比

    Figure  6.  Comparison of soil horizontal acceleration time history

    图  7  场地沿深度方向水平残余位移

    Figure  7.  The horizontal residual displacement of the site along the depth direction

    图  8  试验结束后模型箱残余位移

    Figure  8.  Residual displacement of the model box after the test

    图  9  典型场地有限元模型

    Figure  9.  Finite element model of typical site

    图  10  水平和倾斜场地超孔隙水压力时程曲线

    Figure  10.  Pore water pressure time history curves of horizontal and inclined sites

    图  11  水平和倾斜场地土体水平加速度时程曲线(a)和峰值(b)

    Figure  11.  Time history curves (a) and peaks (b) of soil horizontal acceleration in horizontal and inclined sites

    图  12  地表水平位移时程曲线

    Figure  12.  Time history curves of surface horizontal displacement

    图  13  水平和倾斜场地残余位移对比

    Figure  13.  Comparison of residual displacement of horizontal and inclined sites

    图  14  水平和倾斜场地桥墩和桩身曲率对比

    Figure  14.  Comparison of pier and pile curvature between horizontal and inclined sites

    图  15  沿深度方向桩身残余位移

    Figure  15.  Residual displacement of pile along depth direction

    图  16  土体-桩基在双向地震作用下水平和倾斜场地在−20.0 m深处的响应时程

    Figure  16.  Response time history of soil-pile foundation for horizontal and inclined sites under bidirectional seismic excitation at −20.0 m depth

    表  1  模型材料参数

    Table  1.   Model material parameters

    土层密度ρ
    /(t•m−3)
    参考剪切
    模量Gr
    /kPa
    参考体积
    模量Br
    /kPa
    八面体
    峰值应变
    Ƴmax
    摩擦角
    ɸ
    参考围压
    /kPa
    压力
    系数n
    黏聚力c
    /kPa
    剪胀角
    ɸPT
    剪缩
    参数
    c1
    剪缩
    参数
    c3
    剪胀
    参数
    d1
    剪胀
    参数
    d2
    屈服
    面数
    硬土层1.51500007500000.10.01000.075
    砂土层1.7600001600000.1311010.5310.0930.180.00.1720
    下载: 导出CSV
  • [1] 白铭学,张苏民. 高烈度地震时黄土地层的液化移动[J]. 工程勘察,1990(6):1-5

    Bai M X,Zhang S M. Landslide induced by liquefaction of loessial soil during earthquake of high intensity[J]. Geotechnical Investigation & Surveying,1990(6):1-5
    [2] 刘魁,常允良,张韬. 石碑塬滑坡地震动力及液化有限元分析[J]. 山西建筑,2011,37(35):53-54 doi: 10.3969/j.issn.1009-6825.2011.35.032

    Liu K,Chang Y L,Zhang T. On dynamic of earthquake and landslide in Shibeiyuan and its liquefaction finite element analysis[J]. Shanxi Architecture,2011,37(35):53-54 doi: 10.3969/j.issn.1009-6825.2011.35.032
    [3] Hamada M,Towhata I,Yasuda S,et al. Study on permanent ground displacement induced by seismic liquefaction[J]. Computers & Geotechnics,1987,4(4):197-220
    [4] 王兰民. 黄土地层大规模地震液化滑移的机理与风险评估[J]. 岩土工程学报,2020,42(1):1-19

    Wang L M. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering,2020,42(1):1-19
    [5] Sasaki Y, Tokida K I, Matsumoto H, et al. Experimental study on lateral flow of ground due to soil liquefaction[C]//Proceedings of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. Missouri: University of Missouri Rolla, 1991
    [6] Sasaki Y, Tokida K I, Matsumoto H, et al. Shake table tests on lateral ground flow induced by soil liquefaction[C]//Proceedings of 3rd Japan-US Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction. San Francisco, CA, 1991
    [7] 陈继华,庄海洋,王伟. 表面倾斜可液化地基变形特性振动台试验研究[J]. 工程勘察,2013,41(8):6-10,29

    Chen J H,Zhuang H Y,Wang W. Shaking table tests on deformation properties of the cone-shaped liquefaction foundation[J]. Geotechnical Investigation & Surveying,2013,41(8):6-10,29
    [8] Yang Z J,Zhang X R,Yang R,et al. Shake table modeling of pile foundation performance in laterally spreading frozen ground crust overlying liquefiable soils[J]. Journal of Cold Regions Engineering,2018,32(4):04018012 doi: 10.1061/(ASCE)CR.1943-5495.0000171
    [9] 王志华,徐超,周恩全,等. 液化土体流滑推桩效应的振动台模型试验[J]. 地震工程与工程振动,2014,34(2):246-251

    Wang Z H,Xu C,Zhou E Q,et al. Shaking table test on effects of sand flow on pile in liquefied ground[J]. Earthquake Engineering and Engineering Vibration,2014,34(2):246-251
    [10] 王豪,高广运,王禹. 地震荷载作用下可液化微倾场地侧向变形研究[J]. 工程地质学报,2016,24(增刊1):85-92

    Wang H,Gao G Y,Wang Y. Study on lateral spreading of liquefiable and inclined ground under earthquake[J]. Journal of Engineering Geology,2016,24(S1):85-92
    [11] 唐亮,凌贤长,艾哈迈德•艾格玛. 液化侧向流动场地桩基动力反应振动台试验三维有限元数值模拟方法[J]. 土木工程学报,2013,46(增刊1):180-184

    Tang L,Ling X Z,Ahmed E. Three-dimensional finite element analysis of shake-table test for dynamic pile behavior in liquefaction-induced lateral spreading ground[J]. China Civil Engineering Journal,2013,46(S1):180-184
    [12] 王刚,张建民. 砂土液化变形的数值模拟[J]. 岩土工程学报,2007,29(3):403-409 doi: 10.3321/j.issn:1000-4548.2007.03.015

    Wang G,Zhang J M. Numerical modeling of liquefaction-induced deformation in sand[J]. Chinese Journal of Geotechnical Engineering,2007,29(3):403-409 doi: 10.3321/j.issn:1000-4548.2007.03.015
    [13] 林大富. 缓倾斜场地液化侧移简化计算及影响因素研究[D]. 重庆: 西南交通大学, 2019

    Lin D F. Study on simplified calculation of liquefaction lateral spreading in gently inclined site and influencing factors[D]. Chongqing: Southwest Jiaotong University, 2019
    [14] Lee R L, Bradley B A, Franklin M J. Characteristics of vertical ground motions in the Canterbury earthquakes[C]//New Zealand Society for Earthquake Engineering Annual Conference 2013. Wellington: University of Canterbury, 2013
    [15] Cubrinovski M,Bradley B,Wotherspoon L,et al. Geotechnical aspects of the 22 February 2011 Christchurch earthquake[J]. Bulletin of the New Zealand Society for Earthquake Engineering,2011,44(4):205-226 doi: 10.5459/bnzsee.44.4.205-226
    [16] 管仲国,黄勇,张昊宇,等. 青海玛多7.4级地震桥梁工程震害特性分析[J]. 世界地震工程,2021,37(3):38-45 doi: 10.3969/j.issn.1007-6069.2021.03.005

    Guan Z G,Huang Y,Zhang H Y,et al. Damage characteristics and analysis of bridge engineering in M7.4 Qinghai Maduo earthquake[J]. World Earthquake Engineering,2021,37(3):38-45 doi: 10.3969/j.issn.1007-6069.2021.03.005
    [17] National Science Foundation. What is OpenSees[EB/OL].  [2022-02-14]. https://opensees.berkeley.edu/index.php
    [18] 黄雨,八嶋厚,张锋. 液化场地桩-土-结构动力相互作用的有限元分析[J]. 岩土工程学报,2005,27(6):646-651 doi: 10.3321/j.issn:1000-4548.2005.06.008

    Huang Y,Yashima A,Zhang F. Finite element analysis of pile-soil-structure dynamic interaction in liquefiable site[J]. Chinese Journal of Geotechnical Engineering,2005,27(6):646-651 doi: 10.3321/j.issn:1000-4548.2005.06.008
    [19] 建筑抗震设计规范: GB50011—2010[S]. 北京: 中国建筑工业出版社, 2016

    Code for seismic design of buildings: GB50011—2010[S]. Beijing: China Architecture & Building Press, 2016
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  101
  • PDF下载量:  19
出版历程
  • 收稿日期:  2022-02-15
  • 录用日期:  2022-04-01
  • 网络出版日期:  2022-05-17

目录

    /

    返回文章
    返回
    本系统由北京仁和汇智信息技术有限公司设计开发 百度统计