Study on the difference of seismic responses of liquefied horizontal and inclined site-pile foundation-bridge structures under bidirectional earthquake excitations
-
摘要: 根据已经完成的液化侧向扩展场地-群桩基础-上部结构体系大型振动台试验,在有限元软件OpenSees中建立了可液化倾斜场地振动台试验的有限元模型。通过与试验结果对比,验证了数值模型的可靠性。基于此,建立了典型水平和倾斜液化场地-桩基-桥梁结构体系的数值模型,讨论了双向地震作用下水平和倾斜场地体系地震响应的差异,结果表明:相比水平场地,倾斜场地超孔隙水压力在峰值阶段波动幅度更大,土体的侧向位移增加明显,尤其是在饱和砂土中部位置;倾斜场地中桩基础的破坏程度更大,可液化层中部桩基曲率最大可增大约13倍,桩身水平位移显著增加;而水平场地桥墩曲率比倾斜场地桥墩曲率大,建议在液化场地桩基设计中应考虑场地倾斜带来的影响。Abstract: According to the completed large-scale shaking table test of the liquefied lateral extension site-pile group foundation-superstructure system, the finite element model of the shaking table test of the liquefiable inclined site is established in the finite element software OpenSees. The reliability of the numerical model is verified by comparing with the experimental results. Based on this, numerical models of typical horizontal and inclined liquefaction site-pile foundation-bridge structural systems are established, and the difference in seismic response of horizontal and inclined site under bidirectional seismic excitation is discussed. The water pressure fluctuates more at the peak stage, and the lateral displacement of the soil increases significantly, especially in the middle of the saturated sand. The damage degree of the pile foundation in the inclined field is greater, and the maximum curvature of the pile foundation in the middle of the liquefiable layer can be increased by about approximately 13 times. The horizontal displacement of the pile body increases significantly. However, the curvature of the pier in the horizontal site is larger than that in the inclined site. It is suggested that the influence of the site inclination should be considered in the pile foundation design of the liquefaction site.
-
表 1 模型材料参数
Table 1. Model material parameters
土层 密度ρ
/(t•m−3)参考剪切
模量Gr
/kPa参考体积
模量Br
/kPa八面体
峰值应变
Ƴmax摩擦角
ɸ参考围压
/kPa压力
系数n黏聚力c
/kPa剪胀角
ɸPT剪缩
参数
c1剪缩
参数
c3剪胀
参数
d1剪胀
参数
d2屈服
面数硬土层 1.5 150000 750000 0.1 0.0 100 0.0 75 砂土层 1.7 60000 160000 0.1 31 101 0.5 31 0.093 0.18 0.0 0.17 20 -
[1] 白铭学,张苏民. 高烈度地震时黄土地层的液化移动[J]. 工程勘察,1990(6):1-5Bai M X,Zhang S M. Landslide induced by liquefaction of loessial soil during earthquake of high intensity[J]. Geotechnical Investigation & Surveying,1990(6):1-5 [2] 刘魁,常允良,张韬. 石碑塬滑坡地震动力及液化有限元分析[J]. 山西建筑,2011,37(35):53-54 doi: 10.3969/j.issn.1009-6825.2011.35.032Liu K,Chang Y L,Zhang T. On dynamic of earthquake and landslide in Shibeiyuan and its liquefaction finite element analysis[J]. Shanxi Architecture,2011,37(35):53-54 doi: 10.3969/j.issn.1009-6825.2011.35.032 [3] Hamada M,Towhata I,Yasuda S,et al. Study on permanent ground displacement induced by seismic liquefaction[J]. Computers & Geotechnics,1987,4(4):197-220 [4] 王兰民. 黄土地层大规模地震液化滑移的机理与风险评估[J]. 岩土工程学报,2020,42(1):1-19Wang L M. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering,2020,42(1):1-19 [5] Sasaki Y, Tokida K I, Matsumoto H, et al. Experimental study on lateral flow of ground due to soil liquefaction[C]//Proceedings of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. Missouri: University of Missouri Rolla, 1991 [6] Sasaki Y, Tokida K I, Matsumoto H, et al. Shake table tests on lateral ground flow induced by soil liquefaction[C]//Proceedings of 3rd Japan-US Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction. San Francisco, CA, 1991 [7] 陈继华,庄海洋,王伟. 表面倾斜可液化地基变形特性振动台试验研究[J]. 工程勘察,2013,41(8):6-10,29Chen J H,Zhuang H Y,Wang W. Shaking table tests on deformation properties of the cone-shaped liquefaction foundation[J]. Geotechnical Investigation & Surveying,2013,41(8):6-10,29 [8] Yang Z J,Zhang X R,Yang R,et al. Shake table modeling of pile foundation performance in laterally spreading frozen ground crust overlying liquefiable soils[J]. Journal of Cold Regions Engineering,2018,32(4):04018012 doi: 10.1061/(ASCE)CR.1943-5495.0000171 [9] 王志华,徐超,周恩全,等. 液化土体流滑推桩效应的振动台模型试验[J]. 地震工程与工程振动,2014,34(2):246-251Wang Z H,Xu C,Zhou E Q,et al. Shaking table test on effects of sand flow on pile in liquefied ground[J]. Earthquake Engineering and Engineering Vibration,2014,34(2):246-251 [10] 王豪,高广运,王禹. 地震荷载作用下可液化微倾场地侧向变形研究[J]. 工程地质学报,2016,24(增刊1):85-92Wang H,Gao G Y,Wang Y. Study on lateral spreading of liquefiable and inclined ground under earthquake[J]. Journal of Engineering Geology,2016,24(S1):85-92 [11] 唐亮,凌贤长,艾哈迈德•艾格玛. 液化侧向流动场地桩基动力反应振动台试验三维有限元数值模拟方法[J]. 土木工程学报,2013,46(增刊1):180-184Tang L,Ling X Z,Ahmed E. Three-dimensional finite element analysis of shake-table test for dynamic pile behavior in liquefaction-induced lateral spreading ground[J]. China Civil Engineering Journal,2013,46(S1):180-184 [12] 王刚,张建民. 砂土液化变形的数值模拟[J]. 岩土工程学报,2007,29(3):403-409 doi: 10.3321/j.issn:1000-4548.2007.03.015Wang G,Zhang J M. Numerical modeling of liquefaction-induced deformation in sand[J]. Chinese Journal of Geotechnical Engineering,2007,29(3):403-409 doi: 10.3321/j.issn:1000-4548.2007.03.015 [13] 林大富. 缓倾斜场地液化侧移简化计算及影响因素研究[D]. 重庆: 西南交通大学, 2019Lin D F. Study on simplified calculation of liquefaction lateral spreading in gently inclined site and influencing factors[D]. Chongqing: Southwest Jiaotong University, 2019 [14] Lee R L, Bradley B A, Franklin M J. Characteristics of vertical ground motions in the Canterbury earthquakes[C]//New Zealand Society for Earthquake Engineering Annual Conference 2013. Wellington: University of Canterbury, 2013 [15] Cubrinovski M,Bradley B,Wotherspoon L,et al. Geotechnical aspects of the 22 February 2011 Christchurch earthquake[J]. Bulletin of the New Zealand Society for Earthquake Engineering,2011,44(4):205-226 doi: 10.5459/bnzsee.44.4.205-226 [16] 管仲国,黄勇,张昊宇,等. 青海玛多7.4级地震桥梁工程震害特性分析[J]. 世界地震工程,2021,37(3):38-45 doi: 10.3969/j.issn.1007-6069.2021.03.005Guan Z G,Huang Y,Zhang H Y,et al. Damage characteristics and analysis of bridge engineering in M7.4 Qinghai Maduo earthquake[J]. World Earthquake Engineering,2021,37(3):38-45 doi: 10.3969/j.issn.1007-6069.2021.03.005 [17] National Science Foundation. What is OpenSees[EB/OL]. [2022-02-14]. https://opensees.berkeley.edu/index.php [18] 黄雨,八嶋厚,张锋. 液化场地桩-土-结构动力相互作用的有限元分析[J]. 岩土工程学报,2005,27(6):646-651 doi: 10.3321/j.issn:1000-4548.2005.06.008Huang Y,Yashima A,Zhang F. Finite element analysis of pile-soil-structure dynamic interaction in liquefiable site[J]. Chinese Journal of Geotechnical Engineering,2005,27(6):646-651 doi: 10.3321/j.issn:1000-4548.2005.06.008 [19] 建筑抗震设计规范: GB50011—2010[S]. 北京: 中国建筑工业出版社, 2016Code for seismic design of buildings: GB50011—2010[S]. Beijing: China Architecture & Building Press, 2016 -