Scientific agenda and advances in seismic event discrimination research at the CTBT Science and Technology Conference
-
摘要: 全面禁止核试验条约组织(Comprehensive Nuclear-Test-Ban Treaty Organization,CTBTO)科学技术大会(Science and Technology Conference,SnT)致力于推进禁核试的科技进步,依靠科技创新来加强《全面禁止核试验条约》(Comprehensive Nuclear-Test-Ban Treaty,CTBT)的条约核查制度能力,加快条约生效进程。鉴于地震学是禁核试监测的重要手段以及SnT大会的科学进展有助于检视地震科技的发展,本文系统分析了SnT大会的科学议题设置以及SnT大会中地震事件性质识别等研究进展。分析表明,SnT大会主题中的 “地球复杂系统” 和 “传感器与网络技术” ,以及禁核试监测手段中的地震学手段更受关注。事件性质识别研究始终是与CTBT相关的地震学的核心问题,其在朝鲜系列核试验事件的应用研究也同样是关注的焦点问题,而深度学习和机器学习等新技术在事件性质识别研究中展示了较快的发展趋势。Abstract: Science and Technology Conference (SnT) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is committed to advancing the scientific and technological progress of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), relying on scientific and technological innovation to strengthen the treaty verification system capabilities of CTBT and accelerating the progress of its entry into force. As seismology is an important means for nuclear-test-ban monitoring, and the scientific advances of the SnT conference is helpful to review the development of earthquake science and technology, this paper systematically analyzes the scientific topic setting and the advances of seismic event discrimination research in the SnT conference. The analysis showed that the themes of “the earth as a complex system” and “advances in sensors, networks and processing”, as well as the seismological approaches of the nuclear-test-ban monitoring, attracted more attention. Seismic event discrimination remains a critical CTBT-related seismology problem, and the same is the focus of attention in the applied research on the North Korean nuclear test series, while new technologies such as deep learning and machine learning have shown a rapid development trend in event discrimination research.
-
Key words:
- CTBT /
- SnT /
- nuclear test /
- event discrimination
-
表 1 CTBT国际监测系统(IMS)建设的执行进展
Table 1. Implementation progress of the CTBT IMS facilities
已认证 已安装 建设中 计划 全部 主要地震设施 44 1 1 4 50 辅助地震设施 109 7 1 3 120 次声设施 53 1 1 5 60 水声设施 11 0 0 0 11 放射性核素设施(可检测惰性气体) 72(25) 0(6) 1(9) 7(0) 80(40) 放射性核素实验室 14 0 0 2 16 -
[1] 靳平, 潘常周, 王红春. CTBT核查中的地震监测技术[C]//刘代志. 国家安全地球物理丛书(十)−地球物理环境与国家安全. 西安: 西安地图出版社, 2014: 89-98Jin P, Pan C Z, Wang H C. Seismic monitoring technology in CTBT verification[C]//Liu D Z. National security geophysical series (X) : Geophysical environment and national security. Xi’an: Xi’an Map Press, 2014: 89-98 [2] Patton H J,Taylor S R. Effects of shock-induced tensile failure on mb-MS discrimination:Contrasts between historic nuclear explosions and the North Korean test of 9 October 2006[J]. Geophysical Research Letters,2008,35(14):L14301 doi: 10.1029/2008GL034211 [3] Koper K D,Pechmann J C,Burlacu R,et al. Magnitude-based discrimination of man-made seismic events from naturally occurring earthquakes in Utah,USA[J]. Geophysical Research Letters,2016,43(20):10638-10645 doi: 10.1002/2016GL070742 [4] Yildinm E,Gulbağ A,Horasan G,et al. Discrimination of quarry blasts and earthquakes in the vicinity of Istanbul using soft computing techniques[J]. Computers and Geosciences,2011,37(9):1209-1217 doi: 10.1016/j.cageo.2010.09.005 [5] Rabin N,Bregman Y,Lindenbaum O,et al. Earthquake-explosion discrimination using diffusion maps[J]. Geophysical Journal International,2016,207(3):1484-1492 doi: 10.1093/gji/ggw348 [6] Ismail A. Discrimination between quarry blasts and local earthquakes in Aswan, Egypt[C]//CTBT Science and Technology Conference 2019, Vienna, Austria. Vienna: CTBTO, 2019: 99 [7] Wang T T, Bian Y J. Amplitude attenuation and applied in earthquake and explosion identification[C]//CTBT Science and Technology Conference 2017, Vienna, Austria. Vienna: CTBTO, 2017: 89 [8] Wei F S, Xu Z H. Difference in seismic cepstrum between explosions and earthquakes[C]//CTBT Science and Technology Conference 2009, Vienna, Austria. Vienna: CTBTO, 2009: 109 [9] Kolaj M, Ackerley N, McCormack D, et al. Using spectral ratios to discriminate between low-magnitude earthquakes, explosions and mining events in Canada[C]//CTBT Science and Technology Conference 2019, Vienna, Austria. Vienna: CTBTO, 2019: 196 [10] Atmani A, Laasri E H A, Agliz D, et al. Classification of seismic events using a time-frequency based approach[C]//CTBT Science and Technology Conference 2021, Vienna, Austria. Vienna: CTBTO, 2021: 208 [11] Reynen A,Audet P. Supervised machine learning on a network scale:Application to seismic event classification and detection[J]. Geophysical Journal International,2018,210(3):1394-1409 [12] 王婷婷,边银菊,张博. 地震和爆破的综合识别方法研究[J]. 地球物理学进展,2013,28(5):2433-2443 doi: 10.6038/pg20130522Wang T T,Bian Y J,Zhang B. The comprehensive identification methods between earthquakes and explosions[J]. Progress in Geophysics,2013,28(5):2433-2443 doi: 10.6038/pg20130522 [13] Smirnov A, Mikhailova N, Mukambaev A. Discrimination of quarry blasts using a complex of seismic and infrasound data in Kazakhstan[C]//CTBT Science and Technology Conference 2021, Vienna, Austria. Vienna: CTBTO, 2021: 138-139 [14] Şemin K U, Destici T C, Koçak S, et al. Identification of quarry blasts near BRMAR seismic array: An application of multichannel cross-correlation detector[C]//CTBT Science and Technology Conference 2019, Vienna, Austria. Vienna: CTBTO, 2019: 78-79 [15] Kitov I, Bobrov D, Rozhkov M. The Use of machine learning in seismic monitoring at the IDC: Classification of events built with waveform cross correlation[C]//CTBT Science and Technology Conference 2013, Vienna, Austria. Vienna: CTBTO, 2013: 81 [16] Laasri H A, Akhouayri E, Agliz D, et al. A supervised genetic-fuzzy approach for seismic signal classification[C]//CTBT Science and Technology Conference 2013, Vienna, Austria. Vienna: CTBTO, 2013: 97 [17] Bregman Y, Rabin N, Ben-Horin Y, et al. Seismic event discrimination using diffusion maps[C]//CTBT Science and Technology Conference 2015, Vienna, Austria. Vienna: CTBTO, 2015: 149-150 [18] Arora R, Arora, Bras B L. Global scale discrimination of explosions and earthquakes with deep learning[C]//CTBT Science and Technology Conference 2021, Vienna, Austria. Vienna: CTBTO, 2021: 235-236 [19] Köhler A, Maeland S. Unsupervised deep learning for identifying seismic event classes in signal-rich records for environmental monitoring[C]//CTBT Science and Technology Conference 2021, Vienna, Austria. Vienna: CTBTO, 2021: 231 [20] Bregman Y, Radzyner Y, Ben-Horin Y, et al. Machine learning based earthquakes-explosion discrimination for Sea of Galilee seismic events of July 2018[C]//CTBT Science and Technology Conference 2021, Vienna, Austria. Vienna: CTBTO, 2021: 227 [21] Lethy A, Hussein H, Gabry M, et al. Discrimination between earthquakes and quarries blasts using committee machine[C]//CTBT Science and Technology Conference 2021, Vienna, Austria. Vienna: CTBTO, 2021: 230 [22] Semin K, Necmioglu O, Destici C, et al. The analysis of DPRK nuclear test of February 12, 2013 by Belbasi nuclear tests monitoring center—KOERI[C]//CTBT Science and Technology Conference 2013, Vienna, Austria. Vienna: CTBTO, 2013: 80 [23] Kim S, Kim T. The T-phase observed from the underground nuclear explosions of North Korea[C]//CTBT Science and Technology Conference 2013, Vienna, Austria. Vienna: CTBTO, 2013: 81 [24] Koch K, Richards P, Kim W, et al. Open seismic data supporting the occurrence of an event on 12 May 2010 in the Democratic People’s Republic of Korea[C]//CTBT Science and Technology Conference 2015, Vienna, Austria. Vienna: CTBTO, 2015: 86 [25] Rohadi S, Bambang Sunardi B, Rasmid R. Analysis spectral and focal mechanism of likely nuclear explosion in North Korea January 2016[C]//CTBT Science and Technology Conference 2017, Vienna, Austria. Vienna: CTBTO, 2017: 43 [26] Xu H. Focal mechanism of 2017 DPRK nuclear explosion and its collapse event[C]//CTBT Science and Technology Conference 2019, Vienna, Austria. Vienna: CTBTO, 2019: 78 [27] Tibi R. Discrimination of seismic events (2006 to 2020)in North Korea using P/Lg amplitude ratios from regional stations and a bivariate discriminant function[C]//CTBT Science and Technology Conference 2021, Vienna, Austria. Vienna: CTBTO, 2021: 123 [28] Chun K Y. A Near-regional verification analysis of North Korean nuclear tests[C]//CTBT Science and Technology Conference 2011, Vienna, Austria. Vienna: CTBTO, 2011: 57 [29] Elkholy S, Moussa H, ElGabry M. Discrimination between nuclear explosions and natural earthquakes[C]//CTBT Science and Technology Conference 2019, Vienna, Austria. Vienna: CTBTO, 2019: 179 [30] Nikulins V. Detection of nuclear explosions by remote regional seismic network[C]//CTBT Science and Technology Conference 2019, Vienna, Austria. Vienna: CTBTO, 2019: 77 [31] Liu Z H. The application of multi-criteria synthetic method in discrimination of nuclear explosions from earthquakes[C]//CTBT Science and Technology Conference 2019, Vienna, Austria. Vienna: CTBTO, 2019: 193 [32] Kurbanov K. Comparative anaysis of the waveforms of the North Korean nuclear tests obtained by the seismological method at the Alibek station[C]//CTBT Science and Technology Conference 2019, Vienna, Austria. Vienna: CTBTO, 2019: 76 [33] Liashchuk O, Andrushchenko Y, Karyagin Y, et al. Identification of seismic signals from underground nuclear explosion produced at DPRK test site[C]//CTBT Science and Technology Conference 2017, Vienna, Austria. Vienna: CTBTO, 2017: 44 [34] Kolesnykov L, Liashchuk O, Andrushchenko Y. Registration of events from DPRK test site in 2016 by facilities of main center of special monitoring[C]//CTBT Science and Technology Conference 2017, Vienna, Austria. Vienna: CTBTO, 2017: 45 [35] Sykes L R, Nettles M. Dealing with hard-to-identify seismic events globally and those near nuclear test sites[C]//CTBT Science and Technology Conference 2009, Vienna, Austria. Vienna: CTBTO, 2009: 109-110 [36] Tahir M. Events Discrimination and source parameters using moment tensor inversion[C]//CTBT Science and Technology Conference 2017, Vienna, Austria. Vienna: CTBTO, 2017: 44 [37] Gaebler P J, Barth A, Ceranna L, et al. Seismological investigations of the 2017 North Korean nuclear test[C]//CTBT Science and Technology Conference 2019, Vienna, Austria. Vienna: CTBTO, 2019: 82 [38] Kim W Y, Richards P G, Sykes L R. Discrimination of earthquakes and explosions near nuclear test sites using regional high-frequency data[C]//CTBT Science and Technology Conference 2009, Vienna, Austria. Vienna: CTBTO, 2009: 110 [39] 田有,柳云龙,刘财,等. 朝鲜2009年和2013年两次核爆的地震学特征对比研究[J]. 地球物理学报,2015,58(3):809-820 doi: 10.6038/cjg20150311Tian Y,Liu Y L,Liu C,et al. Comparative study on seismological characteristics of 2009 and 2013 nuclear explosions in North Korea[J]. Chinese Journal of Geophysics,2015,58(3):809-820 doi: 10.6038/cjg20150311 [40] 林鑫,姚振兴. 利用区域地震波形振幅包络约束朝鲜地下核试验的埋深和当量[J]. 地球物理学报,2016,59(6):2066-2079 doi: 10.6038/cjg20160613Lin X,Yao Z X. Yield and burial depth of the North Korean underground nuclear tests constrained by amplitude envelopes of regional seismic waveforms[J]. Chinese Journal of Geophysics,2016,59(6):2066-2079 doi: 10.6038/cjg20160613 [41] Zhang M,Wen L X. High-precision location and yield of North Korea’s 2013 nuclear test[J]. Geophysical Research Letters,2013,40(12):2941-2946 doi: 10.1002/grl.50607 [42] He X,Zhao L F,Xie X B,et al. High-precision relocation and event discrimination for the 3 September 2017 underground nuclear explosion and subsequent seismic events at the North Korean test site[J]. Seismological Research Letters,2018,89(6):2042-2048 [43] 任梦依,边银菊,王婷婷,等. 朝鲜核试验相关地震学研究进展及其文献计量学分析[J]. 地球与行星物理论评,2021,52(3):326-340Ren M Y,Bian Y J,Wang T T,et al. Research progress and bibliometric analysis of seismological research on North Korean nuclear test[J]. Reviews of Geophysics and Planetary Physics,2021,52(3):326-340 [44] Zhao L F,Xie X B,Wang W M,et al. Seismological investigation of the 2016 January 6 North Korean underground nuclear test[J]. Geophysical Journal International,2016,206(3):1487-1491 doi: 10.1093/gji/ggw239 [45] Zhao L F,Xie X B,Wang W M,et al. Regional seismic characteristics of the 9 October 2006 North Korean nuclear test[J]. Bulletin of the Seismological Society of America,2008,98(6):2571-2589 doi: 10.1785/0120080128 [46] Liu J Q,Li L,Zahradník J,et al. Generalized source model of the North Korea tests 2009—2017[J]. Seismological Research Letters,2018,89(6):2166-2173 doi: 10.1785/0220180106 [47] Jin P,Xu H L,Wang H C,et al. Secondary seismic sources behind amplitude ratios between the first 2016 and 2013 North Korean nuclear tests[J]. Geophysical Journal International,2017,211(1):322-334 doi: 10.1093/gji/ggx289 [48] Yao J Y,Tian D D,Lu Z,et al. Triggered seismicity after North Korea’s 3 September 2017 nuclear test[J]. Seismological Research Letters,2018,89(6):2085-2093 doi: 10.1785/0220180135 [49] 王向腾,倪四道,周勇,等. 地形起伏对基于地震波形的浅源地震深度反演影响−以2017年9月3日朝鲜M6.3事件为例[J]. 地球物理学报,2019,62(12):4684-4695 doi: 10.6038/cjg2019M0474Wang X T,Ni S D,Zhou Y,et al. Topography effects for focal depth inversion of shallow earthquakes based on waveforms:A case study for the M6.3 event on 3 September 2017 in Democratic People’s Republic of Korea[J]. Chinese Journal of Geophysics,2019,62(12):4684-4695 doi: 10.6038/cjg2019M0474 [50] Wang T T,Bian Y J,Yang Q L,et al. Correction of P/S amplitude ratios for low-magnitude seismic events based on bayesian kriging method[J]. Bulletin of the Seismological Society of America,2021,111(5):2799-2813 doi: 10.1785/0120200293 -