Focal mechanism of 2022 Menyuan MS6.9 earthquake in Qinghai Province
-
摘要: 2022年1月8日,青海门源地区发生MS6.9地震,本文利用CAP方法反演了主震震源机制解和震源深度。结果显示,断层节面Ⅰ:走向191°/倾角62°/滑动角173°,节面Ⅱ:走向284°/倾角82°/滑动角21°。此次地震为走滑型地震,最佳矩心震源深度约3 km,矩震级为MW6.7。结合震源机制解和定位结果分析认为,节面Ⅱ可能为实际破裂面,本次地震发生在冷龙岭断裂和托莱山断裂的交汇部位,本次地震与2016年和1986年2次M6.4地震震源机制解不同,显示出该区域复杂的构造背景。Abstract: On Jan. 8, 2022, a strong earthquake with surface magnitude up to MS6.9 occurred in Menyuan region, Qinghai Province. To understand its tectonic implication, focal mechanism and centroid depth of the major event are inverted by CAP method. The inversion results show that the event is dominated by a strike-slip focal mechanism with a very shallow centroid depth (3 km). Combining with the spatial orientations of relocated aftershocks, we confirm the rupture plane 284°/82°/21° (strike/dip/rake). The focal mechanism is different with those events including the 1986 and 2016 M6.4 Menyuan earthquakes, implying the complex crustal deformation in this region. The results provide fundamental information for seismic hazard in this region.
-
Key words:
- Menyuan earthquake /
- focal mechanism /
- focal depth
-
图 4 门源MS6.9地震矩张量反演理论地震波形 (红色) 与实际观测地震波形 (黑色) 波形图。下方第一行数字为各段理论地震波形相对实际观测波形的移动时间,正值表示理论波形相对观测波形超前。第二行数字为理论波形与观测波形的相关系数 (百分比) 。波形图左侧字母为台站,其下数字分别为台站震中距 (km) 以及理论地震图相对实际观测数据整体移动时间。震源球上黑色区域代表压缩区,白色代表拉张区,红色十字符号代表台站。震源球采用下半球投影
Figure 4. Comparison between synthetic (red) and observed (black) seismograms of 2022 Menyuan MS6.9 event. The numbers on the lower left side of the seismograms are the time shifts (upper) and cross-correlation coefficient in percent (lower). Positive time shifts mean that the observed data have been delayed. The letters on the left side are stations, below which the numbers are epicentral distances and time shifts between synthetics and the observed data. The black color in beach-ball denotes compression, while white color is extension. The red crosses are stations. Lower hemisphere projection is used
-
[1] 邓起东,张培震,冉勇康,等. 中国活动构造基本特征[J]. 中国科学(D辑),2002,32(12):1020-1030Deng Q D,Zhang P Z,Ran Y K,et a1. Basic feature of China active structures[J]. Science in China (Series D),2002,32(12):1020-1030 [2] Zhao L S,Helmberger D V. Source estimation from broadband regional seismograms[J]. Bulletin of the Seismological Society of America,1994,84(1):91-104 [3] Zhu L P,Helmberger D V. Advancement in source estimation techniques using broadband regional seismograms[J]. Bulletin of the Seismological Society of America,1996,86(5):1634-1641 doi: 10.1785/BSSA0860051634 [4] 韦生吉, 倪四道, 崇加军, 等. 2003年8月16日赤峰地震: 一个可能发生在下地壳的地震?[J]. 地球物理学报, 2009, 52(1): 111-119Wei S J, Ni S D, Chong J J, et a1. The 16 August 2003 Chifeng earthquake: Is it a lower crust earthquake?[J]. Chinese Journal of Geophysics, 2009, 52(1): 111-119 [5] 郑勇,马宏生,吕坚,等. 汶川地震强余震(MS5.6)的震源机制解及其与发震构造的关系[J]. 中国科学(D辑),2009,52(6):739-753 doi: 10.1007/s11430-009-0074-3Zheng Y,Ma H S,Lü J,et a1. Source mechanism of strong aftershocks(MS≥5.6) of the 2008/05/12 Wenchuan earthquakes and the implication for seismotectonics[J]. Science in China (Series D),2009,52(6):739-753 doi: 10.1007/s11430-009-0074-3 [6] Zhu L P,Rivera L A. A note on the dynamic and static displacements from a point source in multi-layered media[J]. Geophysical Journal International,2002,148(3):619-627 doi: 10.1046/j.1365-246X.2002.01610.x [7] 郑秀芬,欧阳飚,张东宁,等. “国家数字测震台网数据备份中心”技术系统建设及其对汶川大地震研究的数据支撑[J]. 地球物理学报,2009,52(5):1412-1417 doi: 10.3969/j.issn.0001-5733.2009.05.031Zheng X F,Ouyang B,Zhang D N,et al. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake[J]. Chinese Journal of Geophysics,2009,52(5):1412-1417 doi: 10.3969/j.issn.0001-5733.2009.05.031 [8] Fan L P,Li B R,Liao S R,et al. Precise relocation of the aftershock sequences of the 2022 M6.9 Menyuan earthquake[J]. Earthquake Science,2022,35(3):Q20220008 doi: 10.1016/j.eqs.2022.01.021 [9] 何文贵,刘百篪,袁道阳,等. 冷龙岭活动断裂的滑动速率研究[J]. 西北地震学报,2000,22(1):90-97He W G,Liu B C,Yuan D Y,et al. Research on slip rates of the Lenglongling active fault zone[J]. Northwestern Seismological Journal,2000,22(1):90-97 [10] 何文贵, 袁道阳, 葛伟鹏, 等. 祁连山活动断裂带中东段冷龙岭断裂滑动速率的精确厘定[J]. 地震, 2010, 30(1): 131-137He W G, Yuan D Y, Ge W P, et al. Determination of the slip rate of the Lenglongling fault in the middle and eastern segments of the Qilian Mountain active fault zone[J]. Earthquake, 2010, 30(1): 131-137 [11] Lasserre C,Gaudemer Y,Tapponnier P,et al. Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan Fault,Qinghai,China[J]. Journal of Geophysical Research:Solid Earth,2002,107(B11):2276 [12] 郭鹏,韩竹军,姜文亮,等. 青藏高原东北缘冷龙岭断裂全新世左旋滑动速率[J]. 地震地质,2017,39(2):323-341 doi: 10.3969/j.issn.0253-4967.2017.02.005Guo P,Han Z J,Jiang W L,et al. Holocene left-lateral slip rate of the Lenglongling fault,northeastern margin of the Tibetan Plateau[J]. Seismology and Geology,2017,39(2):323-341 doi: 10.3969/j.issn.0253-4967.2017.02.005 [13] 郭鹏,韩竹军,安艳芬,等. 冷龙岭断裂系活动性与2016年门源6.4级地震构造研究[J]. 中国科学(地球科学),2017,60(5):929-942Guo P,Han Z J,An Y F,et al. Activity of the Lenglongling fault system and seismotectonics of the 2016 MS6.4 Menyuan earthquake[J]. Scientia Sinica Terrae,2017,60(5):929-942 [14] 梁姗姗,雷建设,徐志国,等. 2016 年1月21日青海门源MS6.4余震序列重定位和主震震源机制解[J]. 地球物理学报,2017,60(6):2091-2103 doi: 10.6038/cjg20170606Liang S S,Lei J S,Xu Z G,et al. Relocation of the aftershock sequence and focal mechanism solutions of the 21 January 2016 Menyuan,Qinghai,Ms6.4 earthquake[J]. Chinese Journal of Geophysics,2017,60(6):2091-2103 doi: 10.6038/cjg20170606 [15] 胡朝忠,杨攀新,李智敏,等. 2016年1月21日青海门源6.4级地震的发震机制探讨[J]. 地球物理学报,2016,59(5):1637-1646 doi: 10.6038/cjg20160509Hu C Z,Yang P X,Li Z M,et al. Seismogenic mechanism of the 21 January 2016 Menyuan,Qinghai MS6.4 earthquake[J]. Chinese Journal of Geophysics,2016,59(5):1637-1646 doi: 10.6038/cjg20160509 [16] 姜文亮, 李永生, 田云锋, 等. 冷龙岭地区2016年青海门源6.4级地震发震构造特征[J]. 地震地质, 2017, 39(3): 536-549Jiang W L, Li Y S, Tian Y F, et al. Research of seismogenic structure of the Menyuan MS6.4 earthquake on January 21, 2016 in Lenglongling plateau[J]. Seismology and Geology. 2017, 39(3): 536-549 [17] 李振洪, 韩炳权, 刘振江, 等. InSAR数据约束下的2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2022, doi: 10.13203/j.whugis20220037Li Z H, Han B Q, Liu Z J, et al. Source papameters and slip distributions of the 2016 and 2022 Menyuan, Qinghai earthquakes constrained by InSAR observation[J]. Geomatics and Information Science of Wuhan University, 2022, doi: 10.13203/j.whugis20220037 [18] Yang H F, Wang D, Guo R M, et al. Rapid report of the 8 January 2022 MS 6.9 Menyuan earthquake, Qinghai, China[J]. Earthquake Research Advances, 2022, https: //doi.org/10.1016/j.eqrea.2022.100113 [19] Yao S L,Yang H F. Hypocentral dependent shallow slip distribution and rupture extents along a strike-slip fault[J]. Earth and Planetary Science Letters,2022,578:117296 doi: 10.1016/j.jpgl.2021.117296 [20] Gaudemer Y,Tapponnier P,Meyer B,et al. Partitioning of crustal slip between linked,active faults in the eastern Qilian Shan,and evidence for a major seismic gap,the ‘Tianzhu gap’,on the western Haiyuan Fault,Gansu ( China)[J]. Geophysical Journal International,1995,120(3):599-645 [21] 朱琳, 戴勇, 石富强, 等. 祁连—海原断裂带库仑应力演化及地震危险性[J]. 地震学报, 2022, 44(2). doi: 10.11939/jass.20220012Zhu L, Dai Y, Shi F Q, et al. Coulomb stress evolution and seismic hazard along the Qilian-Haiyuan fault zone[J]. Acta Seismologica Sinica, 2022, 44(2). doi: 10.11939/jass.20220012 -