Main methods and site selection principles of paleo-earthquake research on bedrock fault surfaces
-
摘要: 随着断层面形貌测量、宇宙成因核素测年、地球化学元素测定和光释光等一系列新兴技术的突破,基岩断层面在古地震研究方面的特征优势被不断发掘,日益成为国际古地震研究的热点与前沿。国内外学者从不同专业角度开展了大量的基岩断层面古地震研究,取得了一系列丰硕成果。本文在系统介绍基岩断层面古地震研究的进展、梳理归纳各类研究方法特点的基础上,论述了现阶段基岩断层面在研究对象的选择上存在的问题,提出了今后宜重点加强工作的若干建议,并对基岩断层面古地震研究发展前景进行了展望。Abstract: With the breakthrough of a series of techniques such as measurement of fault morphology, dating of cosmogenic nuclides, measurement of geochemical elements and the optically stimulated luminescence, the dominant characteristics of bedrock faults in paleo-earthquake research have been constantly explored and it has increasingly become international hotspots and frontiers of paleo-earthquake research. Scholars at home and abroad have carried out a large number of paleo-earthquake studies on bedrock faults from different professional perspectives, and have achieved a series of fruitful results. This paper systematically introduces the current situation, summarizes main research methods of paleo-earthquake study on bedrock fault surfaces, points out some problems existing in selecting a suitable study site. Finally, some aspects that need to be strengthened in the future are proposed, and prospects of paleo-earthquake research on bedrock faults are given.
-
Key words:
- bedrock fault surface /
- paleo-earthquake study /
- main methods /
- site selection principle
-
图 2 基岩断层面古地震研究方法的模型示意图
(a) 基岩断层面在地震事件下分段出露模型 (据何宏林等[15]);(b) 形貌测量分析法 (据邹俊杰等[10]);(c)宇宙成因核素暴露测年方法 (据Benedetti等[8]);(d)光释光衰退深度判别法 (据罗明[16]);(e)施密特锤回弹值测量法 (据Tye等[17]);(f)地球化学元素法 (据Manighetti等[18])
Figure 2. Schematic diagram of study methods about paleo-earthquake identification on bedrock fault scarp
(a) Exposure model of bedrock fault surface due to period earthquake events (Modified from He et al. [15]); (b) Morphology measurement and analysis method (Modified from Zou et al.[10]);(c)Cosmogenic nuclide dating thod (Modified from Benedetti et al.[8]);(d) Optical luminescence decay depth measurement method (Modified from Luo[16]);(e) Schmidt hammer rebound value measurement method (Modified from Tye et al.[17]); (f) Geochemical element analysis method (Modified from Manighetti et al.[18])
-
[1] 邓起东,闻学泽. 活动构造研究—历史、进展与建议[J]. 地震地质,2008,30(1):1-30 doi: 10.3969/j.issn.0253-4967.2008.01.002Deng Q D,Wen X Z. A review on the research of active tectonics:History,progress and suggestions[J]. Seismology and Geology,2008,30(1):1-30 doi: 10.3969/j.issn.0253-4967.2008.01.002 [2] 冉勇康,邓起东. 古地震学研究的历史、现状和发展趋势[J]. 科学通报,1999,44(1):12-20 doi: 10.3321/j.issn:0023-074X.1999.01.003Ran Y K,Deng Q D. History,present situation and trend of paleo-seismology[J]. Chinese Science Bulletin,1999,44(1):12-20 doi: 10.3321/j.issn:0023-074X.1999.01.003 [3] McCalplin J P,Nishenko S P. Holocene paleoseismicity,temporal clustering,and probabilities of future large (M>7) earthquakes on the Wasatch fault zone,Utah[J]. Journal of Geophysics Research:Solid Earth,1996,101(B3):6233-6253 [4] Galli P,Peronace E. New paleoseismic data from the Irpinia Fault. A different seismogenic perspective for southern Apennines (Italy)[J]. Earth-Science Reviews,2014,136:175-201 doi: 10.1016/j.earscirev.2014.05.013 [5] Stewart I S. A rough guide to limestone fault scarps[J]. Journal of Structural Geology,1996,18(10):1259-1264 doi: 10.1016/S0191-8141(96)00049-1 [6] Zreda M,Noll J S. Ages of prehistoric earthquakes revealed by cosmogenic chlorine-36 in a bedrock fault scarp at Hebgen Lake[J]. Science,1998,282(5391):1097-1099 doi: 10.1126/science.282.5391.1097 [7] Mitchell S G. Measuring fault displacement rates using in-situ cosmogenic 36Cl: The displacement of the Nahef East bedrock fault scarp in Northern Israel[D]. Vermont: The University of Vermont, 1998 [8] Benedetti L,Finkel R,King G,et al. Motion on the Kaparelli Fault (Greece) prior to the 1981 earthquake sequence determined from 36Cl cosmogenic dating[J]. Terra Nova,2003,15(2):118-124 doi: 10.1046/j.1365-3121.2003.00474.x [9] Giaccio B,Galadini F,Sposato A,et al. Image processing and roughness analysis of exposed bedrock fault planes as a tool for paleoseismological analysis:Results from the Campo Felice fault (central Apennines,Italy)[J]. Geomorphology,2003,49(3):281-301 [10] Zou J J,He H L,Yokoyama Y,et al. Seismic history of a bedrock fault scarp using quantitative morphology together with multiple dating methods:A case study of the Luoyunshan piedmont fault,southwestern Shanxi Rift,China[J]. Tectonophysics,2020,788:228473 doi: 10.1016/j.tecto.2020.228473 [11] Zou J J,He H L,Yokoyama Y,et al. Identification of paleoearthquakes and coseismic slips on a normal fault using high-precision quantitative morphology:Application to the Jiaocheng fault in the Shanxi rift,China[J]. Lithosphere,2021(S2):2550879 [12] Mason J,Schneiderwind S,Pallikarakis A,et al. Fault structure and deformationrates at the Lastros-Sfaka Graben,Crete[J]. Tectonophysics,2016,683:216-232 doi: 10.1016/j.tecto.2016.06.036 [13] Wallace R E. Fault scarps formed during the earthquake of October 2, 1915, Pleasant Valley, Nevada and some tectonic implications[R]. United States Geological Survey Professional Paper, 1274-A. Alexandria: the Distribution Branch, Text Products Section, United States Geological Survey, 1984 [14] Fang W T, Wu D D, Huang L J, et al. DC component minimization of transformerless LCL-type grid-connected inverter with virtual capacitors[C]. Proceedings of the 38th China Control Conference(5), 2019: 228-232 [15] He H L,Wei Z Y,Densmore A. Quantitative morphology of bedrock fault surfaces and identification of paleo-earthquakes[J]. Tectonophysics,2016,693:22-31 doi: 10.1016/j.tecto.2016.09.032 [16] 罗明. 岩石暴露面光释光测年初探[D]. 北京: 中国地震局地质研究所, 2016Luo M. Optical stimulated luminescence dating of rock surfaces[D]. Beijing: Institute of Geology, China Earthquake Administration, 2016 [17] Tye A,Stahl T. Field estimate of paleoseismic slip on a normal fault using the Schmidt hammer and terrestrial LiDAR:Methods and application to the Hebgen fault (Montana,USA)[J]. Earth Surface Processes and Landforms,2018,43(11):2397-2408 doi: 10.1002/esp.4403 [18] Manighetti I,Boucher E,Chauvel C,et al. Rare earth elements reveal past earthquakes on limestone normal faults[J]. Terra Nova,2010,22(6):477-482 doi: 10.1111/j.1365-3121.2010.00969.x [19] Bubeck A,Wilkinson M,Roberts G P,et al. The tectonic geomorphology of bedrock scarps on active normal faults in the Italian Apennines mapped using combined ground penetrating radar and terrestrial laser scanning[J]. Geomorphology,2015,237:38-51 doi: 10.1016/j.geomorph.2014.03.011 -