zhenbo

ISSN 2096-7780 CN 10-1665/P

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基岩断层面古地震研究的主要方法与选点原则

邹俊杰 周永胜 何宏林 耿爽 赵家豪

邹俊杰, 周永胜, 何宏林, 耿爽, 赵家豪. 基岩断层面古地震研究的主要方法与选点原则[J]. 地震科学进展, 2022, (2): 60-66. doi: 10.19987/j.dzkxjz.2021-095
引用本文: 邹俊杰, 周永胜, 何宏林, 耿爽, 赵家豪. 基岩断层面古地震研究的主要方法与选点原则[J]. 地震科学进展, 2022, (2): 60-66. doi: 10.19987/j.dzkxjz.2021-095
Zou Junjie, Zhou Yongsheng, He Honglin, Geng Shuang, Zhao Jiahao. Main methods and site selection principles of paleo-earthquake research on bedrock fault surfaces[J]. Progress in Earthquake Sciences, 2022, (2): 60-66. doi: 10.19987/j.dzkxjz.2021-095
Citation: Zou Junjie, Zhou Yongsheng, He Honglin, Geng Shuang, Zhao Jiahao. Main methods and site selection principles of paleo-earthquake research on bedrock fault surfaces[J]. Progress in Earthquake Sciences, 2022, (2): 60-66. doi: 10.19987/j.dzkxjz.2021-095

基岩断层面古地震研究的主要方法与选点原则

doi: 10.19987/j.dzkxjz.2021-095
基金项目: 中国地震局地质研究所基本科研业务专项(IGCEA2125)和国家自然科学基金(41702221;U1939201)联合资助。
详细信息
    作者简介:

    邹俊杰(1991-),男,博士后,主要从事活动构造、地震地质和构造地貌研究。E-mail:junjiezou_ucas@126.com

    通讯作者:

    何宏林(1964-),男,研究员,主要从事活动构造和构造地貌研究。E-mail:honglin@ies.ac.cn

  • 中图分类号: P315.2

Main methods and site selection principles of paleo-earthquake research on bedrock fault surfaces

  • 摘要: 随着断层面形貌测量、宇宙成因核素测年、地球化学元素测定和光释光等一系列新兴技术的突破,基岩断层面在古地震研究方面的特征优势被不断发掘,日益成为国际古地震研究的热点与前沿。国内外学者从不同专业角度开展了大量的基岩断层面古地震研究,取得了一系列丰硕成果。本文在系统介绍基岩断层面古地震研究的进展、梳理归纳各类研究方法特点的基础上,论述了现阶段基岩断层面在研究对象的选择上存在的问题,提出了今后宜重点加强工作的若干建议,并对基岩断层面古地震研究发展前景进行了展望。

     

  • 图  1  基岩断层面出露的条件 (改自Reicherter等[12]

    (a) 埋藏的基岩断层面;(b) 出露的基岩断层面

    Figure  1.  Conditions for exposure of bedrock fault surfaces (Modified from Reicherter et al.[12])

    (a) Buried bedrock fault surface;(b) Exposed bedrock fault surface

    图  2  基岩断层面古地震研究方法的模型示意图

    (a) 基岩断层面在地震事件下分段出露模型 (据何宏林等[15]);(b) 形貌测量分析法 (据邹俊杰等[10]);(c)宇宙成因核素暴露测年方法 (据Benedetti等[8]);(d)光释光衰退深度判别法 (据罗明[16]);(e)施密特锤回弹值测量法 (据Tye等[17]);(f)地球化学元素法 (据Manighetti等[18]

    Figure  2.  Schematic diagram of study methods about paleo-earthquake identification on bedrock fault scarp

    (a) Exposure model of bedrock fault surface due to period earthquake events (Modified from He et al. [15]); (b) Morphology measurement and analysis method (Modified from Zou et al.[10]);(c)Cosmogenic nuclide dating thod (Modified from Benedetti et al.[8]);(d) Optical luminescence decay depth measurement method (Modified from Luo[16]);(e) Schmidt hammer rebound value measurement method (Modified from Tye et al.[17]); (f) Geochemical element analysis method (Modified from Manighetti et al.[18]

    图  3  基岩断层坎的3种出露和保存情况

    (a) 埋藏型;(b) 完整型;(c) 破坏型

    Figure  3.  Three types of exhumation and preservation of bedrock fault surfaces

    (a) Buried type;(b) Intact type;(c) Destructive type

    图  4  适合开展古地震研究的基岩断层面的特征 (改自Bubeck等[19]

    Figure  4.  Characteristics of bedrock fault surfaces suitable for paleo-earthquake study (Modified from Bubeck et al.[19])

  • [1] 邓起东,闻学泽. 活动构造研究—历史、进展与建议[J]. 地震地质,2008,30(1):1-30 doi: 10.3969/j.issn.0253-4967.2008.01.002

    Deng Q D,Wen X Z. A review on the research of active tectonics:History,progress and suggestions[J]. Seismology and Geology,2008,30(1):1-30 doi: 10.3969/j.issn.0253-4967.2008.01.002
    [2] 冉勇康,邓起东. 古地震学研究的历史、现状和发展趋势[J]. 科学通报,1999,44(1):12-20 doi: 10.3321/j.issn:0023-074X.1999.01.003

    Ran Y K,Deng Q D. History,present situation and trend of paleo-seismology[J]. Chinese Science Bulletin,1999,44(1):12-20 doi: 10.3321/j.issn:0023-074X.1999.01.003
    [3] McCalplin J P,Nishenko S P. Holocene paleoseismicity,temporal clustering,and probabilities of future large (M>7) earthquakes on the Wasatch fault zone,Utah[J]. Journal of Geophysics Research:Solid Earth,1996,101(B3):6233-6253
    [4] Galli P,Peronace E. New paleoseismic data from the Irpinia Fault. A different seismogenic perspective for southern Apennines (Italy)[J]. Earth-Science Reviews,2014,136:175-201 doi: 10.1016/j.earscirev.2014.05.013
    [5] Stewart I S. A rough guide to limestone fault scarps[J]. Journal of Structural Geology,1996,18(10):1259-1264 doi: 10.1016/S0191-8141(96)00049-1
    [6] Zreda M,Noll J S. Ages of prehistoric earthquakes revealed by cosmogenic chlorine-36 in a bedrock fault scarp at Hebgen Lake[J]. Science,1998,282(5391):1097-1099 doi: 10.1126/science.282.5391.1097
    [7] Mitchell S G. Measuring fault displacement rates using in-situ cosmogenic 36Cl: The displacement of the Nahef East bedrock fault scarp in Northern Israel[D]. Vermont: The University of Vermont, 1998
    [8] Benedetti L,Finkel R,King G,et al. Motion on the Kaparelli Fault (Greece) prior to the 1981 earthquake sequence determined from 36Cl cosmogenic dating[J]. Terra Nova,2003,15(2):118-124 doi: 10.1046/j.1365-3121.2003.00474.x
    [9] Giaccio B,Galadini F,Sposato A,et al. Image processing and roughness analysis of exposed bedrock fault planes as a tool for paleoseismological analysis:Results from the Campo Felice fault (central Apennines,Italy)[J]. Geomorphology,2003,49(3):281-301
    [10] Zou J J,He H L,Yokoyama Y,et al. Seismic history of a bedrock fault scarp using quantitative morphology together with multiple dating methods:A case study of the Luoyunshan piedmont fault,southwestern Shanxi Rift,China[J]. Tectonophysics,2020,788:228473 doi: 10.1016/j.tecto.2020.228473
    [11] Zou J J,He H L,Yokoyama Y,et al. Identification of paleoearthquakes and coseismic slips on a normal fault using high-precision quantitative morphology:Application to the Jiaocheng fault in the Shanxi rift,China[J]. Lithosphere,2021(S2):2550879
    [12] Mason J,Schneiderwind S,Pallikarakis A,et al. Fault structure and deformationrates at the Lastros-Sfaka Graben,Crete[J]. Tectonophysics,2016,683:216-232 doi: 10.1016/j.tecto.2016.06.036
    [13] Wallace R E. Fault scarps formed during the earthquake of October 2, 1915, Pleasant Valley, Nevada and some tectonic implications[R]. United States Geological Survey Professional Paper, 1274-A. Alexandria: the Distribution Branch, Text Products Section, United States Geological Survey, 1984
    [14] Fang W T, Wu D D, Huang L J, et al. DC component minimization of transformerless LCL-type grid-connected inverter with virtual capacitors[C]. Proceedings of the 38th China Control Conference(5), 2019: 228-232
    [15] He H L,Wei Z Y,Densmore A. Quantitative morphology of bedrock fault surfaces and identification of paleo-earthquakes[J]. Tectonophysics,2016,693:22-31 doi: 10.1016/j.tecto.2016.09.032
    [16] 罗明. 岩石暴露面光释光测年初探[D]. 北京: 中国地震局地质研究所, 2016

    Luo M. Optical stimulated luminescence dating of rock surfaces[D]. Beijing: Institute of Geology, China Earthquake Administration, 2016
    [17] Tye A,Stahl T. Field estimate of paleoseismic slip on a normal fault using the Schmidt hammer and terrestrial LiDAR:Methods and application to the Hebgen fault (Montana,USA)[J]. Earth Surface Processes and Landforms,2018,43(11):2397-2408 doi: 10.1002/esp.4403
    [18] Manighetti I,Boucher E,Chauvel C,et al. Rare earth elements reveal past earthquakes on limestone normal faults[J]. Terra Nova,2010,22(6):477-482 doi: 10.1111/j.1365-3121.2010.00969.x
    [19] Bubeck A,Wilkinson M,Roberts G P,et al. The tectonic geomorphology of bedrock scarps on active normal faults in the Italian Apennines mapped using combined ground penetrating radar and terrestrial laser scanning[J]. Geomorphology,2015,237:38-51 doi: 10.1016/j.geomorph.2014.03.011
  • 加载中
图(4)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  100
  • PDF下载量:  31
出版历程
  • 收稿日期:  2021-12-28
  • 修回日期:  2022-02-09
  • 网络出版日期:  2022-02-14

目录

    /

    返回文章
    返回
    本系统由北京仁和汇智信息技术有限公司设计开发 百度统计