Research progress of seismic remote sensing anomalies based on multi-parameter combined analysis
-
摘要: 卫星对地观测技术是全球范围内实时监测孕震区地震活动和震后应急救援的有力工具。过去的几十年里,不同种类的卫星观测数据被应用于地震遥感异常探测领域中,并逐渐开展了从单个震例分析,到普遍规律探索,再到内部机理研究的多方面探讨。但由于地球系统的复杂性和孕震过程的不确定性,地震遥感异常研究仍充满困难和挑战。本文利用文献计量分析方法,探究了现今国内外地震遥感异常研究的关注热点和趋势方向,认为目前对于地震遥感异常的研究已由单一参量发展为多参量联合分析阶段;通过3个前沿研究案例分析了常用的综合分析参量与异常分析方法,以及多参量之间的时空同步性关系,表明多参量遥感异常的结合研究和交叉验证是地震遥感异常研究中的重要手段,可以在未来地震前兆研究中发挥重要作用。Abstract: Satellite Earth observation technology is a powerful tool for real-time monitoring of earthquake activity in seismogenic areas and emergency rescue after earthquakes on a global scale. In the past few decades, varieties of satellite observation data have been used in the field of seismic remote sensing anomaly detection. And multi-faceted discussion from analysis of individual earthquake cases to the exploration of universal laws and the study of internal mechanisms have been carried out. However, due to the complexity of the Earth system and the uncertainty of the seismic preparation process, seismic remote sensing anomaly research is still full of difficulties and challenges. This paper uses the bibliometric analysis method to explore the hotspots and directions of current seismic remote sensing anomaly research all around the world. It is believed that the research on seismic remote sensing anomalies has developed from single anomaly parameter analysis to multi-anomaly parameters comprehensive analysis stage currently. By three frontier research cases to analyze commonly used comprehensive analysis parameters and methods, as well as the spatiotemporal synchronization relationship between multiple parameters, it indicates that the combined research and cross-validation of multi-parameter remote sensing anomalies is an important method in seismic remote sensing anomaly research, which can play a significant role in the study of earthquake precursors in the future.
-
Key words:
- multi-parameter /
- remote sensing anomaly /
- earthquake precursor /
- bibliometrics
-
表 1 文献检索关键词表
Table 1. Table of literature keywords
圈层 关键词 盖层 地表温度;微波亮温;红外亮温;长波辐射;植被指数 大气层 大气温度;气溶胶光学厚度;线性云;含碳气体;潜热通量;大气水汽 电离层 总电子含量;F2层扰动;电子浓度;离子浓度;电子/离子温度;磁场强度 表 2 研究案例基本信息
Table 2. Introduction of the research case
地震案例 数据源 分析参量 研究时段 分析方法 研究团队 2017-08-08
九寨沟MW6.5FY-2E、FY-2G TBB、OLR、MIB 2014-01—2017-09 功率谱法 Zhong等[24] GNSS TEC 2014-07—08 滑动四分位距法 2018-02-04
台湾花莲MW6.1
和2018-02-06
台湾花莲MW6.4IGS站点 TEC 震前15天,震后5天 滑动四分位距法 Muhammad等[42] GIOVANNI 在线数据库 每日OLR $ \mu \pm 2\sigma $指标 MERRA-2 位势高度 GLDAS 地表气温 NOAA 在线数据库 每日异常复合数据集 2019-07-04
和2019-07-06
加州MW6.5,MW7.1GNSS TEC 震前1月,震后5天 滑动四分位距法 Xie等 [41] CSES、Swarm Ne CSES:2019-06—07
Swarm:含地震日的3个月时空变化分析 CSES、Swarm Te 注:TBB为黑体亮度温度、MIB为中红外亮度、OLR为出射长波辐射;TEC为总电子含量、Ne为电子密度、Te为电子温度;GLDAS为全球陆地数据同化系统;MERRA-2为NASA的现代回顾性研究和应用第二版;CSES指中国电磁卫星 “张衡一号” ,Swarm星座是欧洲航天局三颗卫星(SwarmA、SwarmB和SwarmC)组成的卫星任务;引入F10.7,Dst, Kp等指数排除太阳活动与地磁场的干扰,F10.7为太阳活动指数、Dst为扰动风暴时间指数、Kp为磁极指数 表 3 各案例地震异常参量时空展布及同步特性
Table 3. Temporal and spatial distribution and synchronization characteristics of seismic anomalous parameters in each case
地震案例 异常参量 时间分布 空间分布 磁性干扰情况 多参量同步性 2017-08-08
九寨沟MW6.5TBB,OLR,MIB 红外异常在震前1个月开始出现,直至震后1个月消逝;
非地震年,无红外异常红外异常分布在震中的东南方向;均在同一地震断层区 在电离层TEC增加期间,无来自太阳活动与地磁活动的干扰 在无来自太阳风暴、地磁风暴的干扰情况下,热辐射与电离层TEC异常具有良好的时间、空间对应性 TEC 震前10天开始出现TEC异常,震后1周不再变化 震中南部和华容山断裂带南部大范围的电离层TEC正异常,后者的异常幅度更大 2018-02-04
台湾花莲MW6.1
和2018-02-06
台湾花莲MW6.4TEC 震前1天,有正的电离层扰动,TEC显著增强,震前8小时消失 震中附近,震中西北方向 安静地磁条件(Kp < 3,Dst < −20 nT),排除磁性活动干扰 安静地磁条件下,所有异常都位于震中的西北方向,沿着菲律宾海板块的运动方向 OLR,位势高度,地面气温,复合异常图 OLR存在显著变化,与电离层异常一致(震前1天),震后2天消失; 震前1天,位势高度和地面气温时间序列呈V形下降,震后2天消失; 气温从MW6.1震前1天开始连续4天观察到下降,在MW6.4地震当天显著下降,震前1天位势高度出现了250 m的非典型下降 2019-07-04
和2019-07-06
加州MW6.5,MW7.1TEC GNSS(CORSs):在6月20—23日,29—30日和7月2日检测到TEC异常;
GIM:在6月20日,22日,29日,7月2日和5日检测到TEC异常TEC、Ne和Te在空间上同步;
震前的异常发生在震中的赤道面(震中东南和西南)在地震相关期间没有磁性风暴,太阳活动和地磁活动等因素对TEC的影响较小 在没有来自太阳风暴、地磁风暴的干扰情况下,3个参数(TEC, Ne 和Te)异常相互验证,且时空连通:TEC和Ne呈正相关,Ne和Te均呈正负相关,主要为负相关,夜间呈较强的线性负相关 Ne,Te CSES:6月20日,26日,28日,30日,7月4—5日Ne和Te异常在空间和时间上吻合; Ne和Te呈负相关,Te随着Ne的减少而增加;
Swarm:Te和Ne在白天既呈负相关又呈正相关,夜间相关性更强;
TEC、Ne和Te在时间上同步 -
[1] 吴忠良,蒋长胜. 地震前兆检验的地球动力学问题——对地震预测问题争论的评述(之三)[J]. 中国地震,2006,22(3):236-241 doi: 10.3969/j.issn.1001-4683.2006.03.003Wu Z L,Jiang C S. Performance evaluation and statistical test of candidate earthquake precursors:Revisit in the perspective of geodynamics-critical review on the recent earthquake prediction debate[J]. Earthquake Research in China,2006,22(3):236-241 doi: 10.3969/j.issn.1001-4683.2006.03.003 [2] 孙和平,徐建桥,崔小明. 重力场的地球动力学与内部结构应用研究进展[J]. 测绘学报,2017,46(10):1290-1299 doi: 10.11947/j.AGCS.2017.20170298Sun H P,Xu J Q,Cui X M. Research progress of the gravity field application in earth's geodynamics and interior structure[J]. Acta Geodaetica et Cartographica Sinica,2017,46(10):1290-1299 doi: 10.11947/j.AGCS.2017.20170298 [3] 吴立新,秦凯,刘善军. 断裂活动及孕震过程遥感热异常分析的研究进展[J]. 测绘学报,2017,46(10):1470-1481 doi: 10.11947/j.AGCS.2017.20170347Wu L X,Qin K,Liu S J. Progress in analysis to remote sensed thermal abnormity with fault activity and seismogenic process[J]. Acta Geodaetica et Cartographica Sinica,2017,46(10):1470-1481 doi: 10.11947/j.AGCS.2017.20170347 [4] 强祖基,徐秀登,赁常恭. 利用卫星热红外异常作地震预报[J]. 世界导弹与航天,1991(4):9-10Qiang Z J,Xu X D,Lin C G. Using satellite thermal infrared anomalies for earthquake prediction[J]. Missiles and Spacecraft,1991(4):9-10 [5] 申旭辉,吴云,单新建. 地震遥感应用趋势与中国地震卫星发展框架[J]. 国际地震动态,2007(8):38-45 doi: 10.3969/j.issn.0253-4975.2007.08.011Shen X H,Wu Y,Shan X J. Remote sensing application in earthquake science and general proposal for earthquake satellite project in China[J]. Recent Developments in World Seismology,2007(8):38-45 doi: 10.3969/j.issn.0253-4975.2007.08.011 [6] 陈立泽,申旭辉,王辉,等. 我国高分辨率遥感技术在地震研究中的应用[J]. 地震学报,2016,38(3):333-344 doi: 10.11939/jass.2016.03.002Chen L Z,Shen X H,Wang H,et al. Application of high-resolution remote sensing technique to earthquake studies in China[J]. Acta Seismologica Sinica,2016,38(3):333-344 doi: 10.11939/jass.2016.03.002 [7] 张学民,申旭辉,赵庶凡,等. 地震电离层探测技术及其应用研究进展[J]. 地震学报,2016,38(3):356-375 doi: 10.11939/jass.2016.03.004Zhang X M,Shen X H,Zhao S F,et al. The seismo-ionospheric monitoring technologies and their application research development[J]. Acta Seismologica Sinica,2016,38(3):356-375 doi: 10.11939/jass.2016.03.004 [8] 何苗,吴立新,崔静,等. 汶川地震前多圈层短—临遥感异常回顾及其时空关联性[J]. 遥感学报,2020,24(6):681-700 doi: 10.11834/jrs.202020059He M,Wu L X,Cui J,et al. Remote sensing anomalies of multiple geospheres before the Wenchuan earthquake and its spatiotemporal correlations[J]. Journal of Remote Sensing,2020,24(6):681-700 doi: 10.11834/jrs.202020059 [9] Xiong P,Tong L,Zhang K,et al. Towards advancing the earthquake forecasting by machine learning of satellite data[J]. Science of The Total Environment,2021,771:145256 doi: 10.1016/j.scitotenv.2021.145256 [10] Gornyi V I,Sal’Man A G,Tronin A A,et al. Outgoing infrared radiation of the earth as an indicator of seismic activity[J]. Doklady Akademii Nauk SSSR,1988,301:67-69 [11] 强祖基,赁常恭,李玲芝,等. 卫星热红外图像亮温异常—短临震兆[J]. 中国科学(D辑),1999(3):313-324,337Qiang Z J,Lin C G,Li L Z,et al. Satellite thermal infrared image brightness temperature anomaly-short-term earthquake precursor[J]. Science in China (Earth Sciences),1999(3):313-324,337 [12] Chakraborty S,Sasmal S,Chakrabarti S K,et al. Observational signatures of unusual outgoing longwave radiation (OLR) and atmospheric gravity waves ( AGW) as precursory effects of May 2015 Nepal earthquakes[J]. Journal of Geodynamics,2017,113:43-51 [13] Tronin A A,Molchanov O A,Biagi P F. Thermal anomalies and well observations in Kamchatka[J]. International Journal of Remote Sensing,2004,25(13):2649-2655 doi: 10.1080/01431160410001665812 [14] Pulinets S A,Ouzounov D,Karelin A V,et al. The physical nature of thermal anomalies observed before strong earthquakes[J]. Physics and Chemistry of the Earth,2006,31(4/9):143-153 doi: 10.1016/j.pce.2006.02.042 [15] 屈春燕,闫丽莉,温少妍,等. 首都圈地区卫星热红外亮温变化特征研究[J]. 地球科学进展,2011,26(2):202-211Qu C Y,Yan L L,Wen S Y,et al. A study of variation characteristics of satellite thermal infrared brightness temperature in capital region[J]. Advances in Earth Science,2011,26(2):202-211 [16] Jing F,Singh R P,Shen X. Land-Atmosphere-Meteorological coupling associated with the 2015 Gorkha (M7.8) and Dolakha (M7.3) Nepal earthquakes[J]. Geomatics Natural Hazards and Risk,2019,10(1):1267-1284 doi: 10.1080/19475705.2019.1573629 [17] Ma W Y,Zhang X D,Liu J,et al. Influences of multiple layers of air temperature differences on tidal forces and tectonic stress before,during and after the Jiujiang earthquake[J]. Remote Sensing of Environment,2018,210:159-165 doi: 10.1016/j.rse.2018.03.003 [18] Ouzounov D,Pulinets S,Romanov A,et al. Atmosphere-ionosphere response to the M9 Tohoku earthquake revealed by joined satellite and ground observations:Preliminary results[J]. Earthquake Science,2011,24(6):557-564 doi: 10.1007/s11589-011-0817-z [19] Qi Y,Wu L X,He M,et al. Spatio-temporally weighted two-step method for retrieving seismic MBT anomaly:May 2008 Wenchuan earthquake sequence being a case[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,13:382-391 doi: 10.1109/JSTARS.2019.2962719 [20] 马瑾,陈顺云,扈小燕,等. 大陆地表温度场的时空变化与现今构造活动[J]. 地学前缘,2010,17(4):1-14Ma J,Chen S Y,Hu X Y,et al. Spatial-temporal variation of the land surface temperature field and present-day tectonic activity[J]. Earth Science Frontiers,2010,17(4):1-14 [21] 陈顺云,马瑾,刘培洵,等. 利用卫星遥感热场信息探索现今构造活动:以汶川地震为例[J]. 地震地质,2014,36(3):775-793 doi: 10.3969/j.issn.0253-4967.2014.03.018Chen S Y,Ma J,Liu P X,et al. Exploring the current tectonic activity with satellite remote sensing thermal information:A case of the Wenchuan earthquake[J]. Seismology and Geology,2014,36(3):775-793 doi: 10.3969/j.issn.0253-4967.2014.03.018 [22] Bhardwaj A,Singh S,Sam L,et al. A review on remotely sensed land surface temperature anomaly as an earthquake precursor[J]. International Journal of Applied Earth Observation and Geoinformation,2017,63:158-166 doi: 10.1016/j.jag.2017.08.002 [23] Cui J,Shen X H,Zhang J F,et al. Analysis of spatiotemporal variations in middle-tropospheric to upper-tropospheric methane during the Wenchuan MS=8.0 earthquake by three indices[J]. Natural Hazards and Earth System Sciences,2019,19(12):2841-2854 doi: 10.5194/nhess-19-2841-2019 [24] Zhong M J,Shan X J,Zhang X M,et al. Thermal infrared and ionospheric anomalies of the 2017 MW6.5 Jiuzhaigou earthquake[J]. Remote Sensing,2020,12(17):2843 doi: 10.3390/rs12172843 [25] Zhang Y,Meng Q Y,Wang Z A,et al. Temperature variations in multiple air layers before the MW6.2 2014 Ludian earthquake,Yunnan,China[J]. Remote Sensing,2021,13(5):884 doi: 10.3390/rs13050884 [26] 廖洪月,董娜,王刚. 利用均线差值振幅波动水平分析汶川、雅安芦山、九寨沟地震前热红外异常[J]. 地震科学进展,2021,51(8):352-361Liao H Y,Dong N,Wang G. Analysis of thermal infrared anomalies before Wenchuan,Yaan Lushan and Jiuzhaigou earthquakes by using amplitude fluctuation level of mean difference[J]. Progress in Earthquake Sciences,2021,51(8):352-361 [27] 祝芙英,周义炎,杨剑,等. 2012年4月11日苏门答腊MS8.6地震前电离层TEC异常变化[J]. 地震地磁观测与研究,2013,34(3):70-75 doi: 10.3969/j.issn.1003-3246.2013.03/04.014Zhu F Y,Zhou Y Y,Yang J,et al. Ionospheric TEC anomalies observed prior to the Sumatra MS8.6 earthquake on 11 April 2012[J]. Seismological and Geomagnetic Observation and Research,2013,34(3):70-75 doi: 10.3969/j.issn.1003-3246.2013.03/04.014 [28] Pulinets S A,Ouzounov D,Ciraolo L,et al. Thermal,atmospheric and ionospheric anomalies around the time of the Colima M7.8 earthquake of 21 January 2003[J]. Annales Geophysicae,2006,24(3):835-849 doi: 10.5194/angeo-24-835-2006 [29] Laverov N P,Pulinets S A,Uzunov D P. Application of the thermal effect of the atmosphere ionization for remote diagnostics of the radioactive pollution of the atmosphere[J]. Doklady Earth Sciences,2011,441(1):1560-1563 doi: 10.1134/S1028334X11110183 [30] Pulinets S,Ouzounov D. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model-An unified concept for earthquake precursors validation[J]. Journal of Asian Earth Sciences,2011,41(4/5):371-382 doi: 10.1016/j.jseaes.2010.03.005 [31] Pulinets S A,Legen’Ka A D. Spatial-temporal characteristics of large scale disturbances of electron density observed in the ionospheric f-region before strong earthquakes[J]. Cosmic Research,2003,41(3):221-229 doi: 10.1023/A:1024046814173 [32] 祝芙英,吴云,林剑,等. 汶川地震前电离层VTEC的异常响应[J]. 地震学报,2009,3l(2):180-187 doi: 10.3321/j.issn:0253-3782.2009.02.007Zhu F Y,Wu Y,Lin J,et al. Anomalous response of ionospheric VTEC before the Wenchuan earthquake[J]. Acta Seismologica Sinica,2009,3l(2):180-187 doi: 10.3321/j.issn:0253-3782.2009.02.007 [33] 闫相相,单新建,曹晋滨,等. 日本MW9.0级特大地震前电离层扰动初步分析[J]. 地球物理学进展,2013,28(1):155-164 doi: 10.6038/pg20130116Yan X X,Shan X J,Cao J B,et al. Preliminary study of the seimoionospheric perturbation before Tohoku-oki MW9.0 earthquake[J]. Progress in Geophysics,2013,28(1):155-164 doi: 10.6038/pg20130116 [34] 马新欣,林湛,陈化然,等. 基于GPS和COSMIC数据分析汶川地震TEC和NmF2扰动[J]. 地球物理学报,2014,57(8):2415-2422 doi: 10.6038/cjg20140803Ma X X,Lin Z,Chen H R,et al. Analysis on ionospheric perturbation of TEC and NmF2 based on GPS and COSMIC data before and after the Wenchuan earthquake[J]. Chinese Journal of Geophysics,2014,57(8):2415-2422 doi: 10.6038/cjg20140803 [35] 姚宜斌,翟长治,孔建,等. 2015年尼泊尔地震的震前电离层异常探测[J]. 测绘学报,2016,45(4):385-395 doi: 10.11947/j.AGCS.2016.20150384Yao Y B,Zhai C Z,Kong J,et al. The pre-earthquake ionosphere anomaly of the 2015 Nepal earthquake[J]. Acta Geodaetica et Cartographica Sinica,2016,45(4):385-395 doi: 10.11947/j.AGCS.2016.20150384 [36] Oikonomou C,Haralambous H,Pulinets S,et al. Investigation of pre-earthquake ionospheric and atmospheric disturbances for three large earthquakes in Mexico[J]. Geosciences,2020,11(1):28 [37] Sarkar S,Gwal A K,Parrot M. Ionospheric variations observed by the DEMETER satellite in the mid-latitude region during strong earthquakes[J]. Journal of Atmospheric and Solar-Terrestrial Physics,2007,69(13):1524-1540 doi: 10.1016/j.jastp.2007.06.006 [38] Santis A D,Balasis G,Pavón-Carrasco F J,et al. Potential earthquake precursory pattern from space:The 2015 Nepal event as seen by magnetic Swarm satellites[J]. Earth and Planetary Science Letters,2017,461:119-126 doi: 10.1016/j.jpgl.2016.12.037 [39] Akhoondzadeh M,De Santis A,Marchetti D,et al. Multi precursors analysis associated with the powerful Ecuador (MW=7.8) earthquake of 16 April 2016 using Swarm satellites data in conjunction with other multi-platform satellite and ground data[J]. Advances in Space Research,2018,61(1):248-263 doi: 10.1016/j.asr.2017.07.014 [40] Wang X Y,Cheng W L,Yang D H,et al. Preliminary validation of in situ electron density measurements onboard CSES using observations from Swarm Satellites[J]. Advances in Space Research,2019,64(4):982-994 doi: 10.1016/j.asr.2019.05.025 [41] Xie T,Chen B Y,Wu L X,et al. Detecting seismo-ionospheric anomalies possibly associated with the 2019 Ridgecrest (California) earthquakes by GNSS,CSES, and Swarm observations[J]. Journal of Geophysical Research:Space Physics,2021,126(9):e2020JA028761 [42] Muhammad A A,Erman Ş,et al. Atmospheric and ionospheric disturbances associated with the M>6 earthquakes in the East Asian sector:A case study of two consecutive earthquakes in Taiwan[J]. Journal of Asian Earth Sciences,2021,220:104918 doi: 10.1016/j.jseaes.2021.104918 [43] Mohamed E K,Gahalaut V K,Sekertekin A,et al. Atmospheric,ionospheric and earth-related variations associated with the 11th August 2012 earthquakes,Ahar,Iran[J]. Journal of Atmospheric and Solar-Terrestrial Physics,2021,216:105595 doi: 10.1016/j.jastp.2021.105595 [44] 翟笃林,祝芙英,林剑,等. 基于地基GPS-TEC的中国区域地震电离层效应研究[J]. 中国地震,2020,36(4):857-871Zhai D L,Zhu F Y,Lin J,et al. Study on the ionosphere effect of earthquakes in China based on GPS-TEC[J]. Earthquake Research in China,2020,36(4):857-871 [45] 王刚,廖洪月,唐好丛. 综合分析方法在中强地震前后电离层TEC异常分析中的应用[J]. 地震科学进展,2021,51(6):266-273 doi: 10.3969/j.issn.2096-7780.2021.06.005Wang G,Liao H Y,Tang H C. Application of comprehensive analysis method to the analysis of ionospheric TEC anomalies before and after moderate earthquakes[J]. Progress in Earthquake Sciences,2021,51(6):266-273 doi: 10.3969/j.issn.2096-7780.2021.06.005 -