Temporal characteristics of the tectonic stress field of northeast Hainan based on digital water level
-
摘要: 选取琼东北地区2008年以来连续稳定、潮汐形态较明显的海口ZK26井、琼海加积井、向荣村井、火山流体井、文昌潭牛井5口井数字化水位及相应的气压资料。利用气压系数和O1、M2波潮汐因子等滑动拟合,得到不排水状态下,各井含水层的孔隙度、固体骨架的体积压缩系数和水的体积压缩系数。并在水平层状含水层(一维)模式下,利用部分含水层介质参数(孔隙度、水和固体骨架的体积压缩系数)、井水位变化量与含水层垂直向应力变化量的关系式,定量分析了琼东北地区构造应力场的动态变化过程。再结合区域重力场累积动态变化及基于GPS基线的区域构造活动综合分析,结果表明,琼东北地区近几年以持续的应力减弱活动为主,今后需跟踪其转折变化情况的发生,并加强多学科、多手段的密切跟踪。Abstract: We selected digital water level and corresponding air pressure data of 5 wells in the northeast Hainan, which are continuous, stable and with obvious solid tide since 2008. These wells are Haikou ZK26 well, Qionghai Jiaji well, Xiangrong village well, Volcanic fluid well, and Wenchang Tanniu well. We obtained porosity and volume compression coefficient between solid skeleton and water under undrained condition by the barometric efficiency and O1、M2 tidal factor smooth fitting. In horizontally layered one-dimensional aquifer mode, using partial aquifer parameters (porosity, water and solid skeleton volume compression coefficient) and relationship between water level variation and aquifer vertical stress, we quantitatively analyzed the dynamic change process of tectonic stress field of the northeast Hainan. Combined with the cumulative dynamic change of regional gravity field and the comprehensive analysis of regional tectonic activities based on GPS baseline, the results show that the northeast of Hainan is dominated by continuous stress weakening activities in recent years. In the future, it is necessary to track the occurrence of its turning changes and strengthen the close tracking of multi-disciplinary and multi means.
-
Key words:
- digital water level /
- tectonic stress field /
- temporal characteristics /
- northeast Hainan
-
表 1 开展研究的琼东北地区5口井的基本情况
Table 1. Basic situation of 5 wells in northeast Hainan
序号 井点名称 东经/° 北纬/° 井深/m 含水层岩性 地下水类型 水位埋深/m 1 海口ZK26井 110.355 20.033 706.30 Q4玄武岩砂砾岩 承压水 13.2 2 向荣村井 110.283 19.983 320.00 细砂岩 裂隙承压水 42.3 3 火山流体井 110.355 19.985 276.10 砂砾岩 裂隙承压水 28.6 4 文昌潭牛井 110.738 19.687 150.76 复矿砾岩 裂隙承压水 1.84 5 琼海加积井 110.462 19.245 525.93 K2砂砾岩 裂隙承压水 2.74 -
[1] 席军, 宛新林, 席道瑛. 孔隙介质中波的衰减及其对冲击波的防护作用[J]. 地震科学进展,2021,51(11):505-516 doi: 10.3969/j.issn.2096-7780.2021.11.004Xi J, Wan X L, Xi D Y. Wave attenuation in porous media and its protective effect on shock wave[J]. Progress in Earthquake Sciences,2021,51(11):505-516 doi: 10.3969/j.issn.2096-7780.2021.11.004 [2] 黄辅琼,晏锐,陈颙,等. 利用深井地下水位动态研究大华北地区现今构造应力场状态[J]. 地震,2004,24(1):112-118 doi: 10.3969/j.issn.1000-3274.2004.01.017Huang F Q,Yan R,Chen Y,et al. Study of present tectonic stress field of Pan-North China region based on ground water level dynamic in deep wells[J]. Earthquake,2004,24(1):112-118 doi: 10.3969/j.issn.1000-3274.2004.01.017 [3] Bodvarsson G. Confined fluids as strain meter[J]. Journal of Geophysical Research,1970,75(14):2711-2718 [4] 李永善. 构造应力引起地下水位变化的主要特征[J]. 西北地震学报,1979,1(1):16-22Li Y S. The main features of groundwater level caused by tectonic stress[J]. Northwestern Seismological Journal,1979,1(1):16-22 [5] 张昭栋,郑金涵,冯初刚. 一种估算地震引起应力场调整的新方法[J]. 地震,1988,8(3):19-27Zhang Z D,Zheng J H,Feng C G. A new method for estimating adjustment of seismic stress field caused by earthquakes[J]. Earthquake,1988,8(3):19-27 [6] 张昭栋,王秀芹,董守德. 加卸载响应比在体应变固体潮中的应用[J]. 地震,1999,19(3):217-222 doi: 10.3969/j.issn.1000-3274.1999.03.001Zhang Z D,Wang X Q,Dong S D. Application of response ratio of load and unload to bulk strain earthtide[J]. Earthquake,1999,19(3):217-222 doi: 10.3969/j.issn.1000-3274.1999.03.001 [7] 孙小龙,刘耀炜,晏锐. 利用水位资料反演华北地区构造应力场变化[J]. 地震,2011,31(2):42-49 doi: 10.3969/j.issn.1000-3274.2011.02.005Sun X L,Liu Y W,Yan R. Inversion of tectonic stress field in the North China region based on groundwater level data[J]. Earthquake,2011,31(2):42-49 doi: 10.3969/j.issn.1000-3274.2011.02.005 [8] 丁风和,哈媛媛,王勇,等. 基于数字化水位的张渤带地区构造应力场时序特征分析[J]. 地震,2015,35(2):133-138 doi: 10.3969/j.issn.1000-3274.2015.02.014Ding F H,Ha Y Y,Wang Y,et al. Temporal characteristics of the tectonic stress field of Zhangbo Belt area based on digital water level[J]. Earthquake,2015,35(2):133-138 doi: 10.3969/j.issn.1000-3274.2015.02.014 [9] 胡小静,付虹,李琼. 滇南地区近期水位趋势上升异常机理初探[J]. 地震学报,2018,40(5):620-631 doi: 10.11939/jass.20170213Hu X J,Fu H,Li Q. Preliminary study on abnormal mechanism of groundwater level rising in southern Yunnan[J]. Acta Seismologica Sinica,2018,40(5):620-631 doi: 10.11939/jass.20170213 [10] 丁风和,韩晓雷,哈媛媛,等. 承压井含水层孔隙度与固体骨架和水的体积压缩系数之间的关系[J]. 地球科学−中国地质大学学报,2015,40(7):1248-1253 doi: 10.3799/dqkx.2015.104Ding F H,Han X L,Ha Y Y,et al. Relationship of porosity and volume compression coefficient of solid skeleton and water in artesian well aquifer[J]. Earth Science−Journal of China University of Geosciences,2015,40(7):1248-1253 doi: 10.3799/dqkx.2015.104 [11] 丁风和,戴勇,宋慧英,等. 大甸子井—含水层系统水文地质参数间的变化关系[J]. 地震地质,2015,37(4):982-990 doi: 10.3969/j.issn.0253-4967.2015.04.004Ding F H,Dai Y,Song H Y,et al. The changing relationship of hydrogeological parameters of Dadianzi well-aquifer system[J]. Seismology and Geology,2015,37(4):982-990 doi: 10.3969/j.issn.0253-4967.2015.04.004 [12] 丁风和,刘耀炜,韩晓雷,等. 基于井潮、气压效应的苏皖地区突出水位异常分析[J]. 地震学报,2017,39(2):248-256 doi: 10.11939/jass.2017.02.008Ding F H,Liu Y W,Han X L,et al. Water level anomaly analysis in Jiangsu and Anhui Provinces based on the well tide and barometric pressure effect[J]. Acta Seismologica Sinica,2017,39(2):248-256 doi: 10.11939/jass.2017.02.008 [13] 杨晓霞,李启雷,刘文邦,等. 德令哈台尕海井水位异常分析[J]. 地震科学进展,2020,50(2):36-39Yang X X,Li Q L,Liu W B,et al. Analysis on the water level anomaly at Delingha Gahai well in Qinghai Province[J]. Progress in Earthquake Sciences,2020,50(2):36-39 -