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摘要　定点形变数据的同震响应识别目前主要依靠人工拣选，尚未见有自动检测方法投入应用。本

文提出专门针对定点形变数据的同震响应检测深度学习模型，该模型用于在单台 VP宽频带倾斜仪秒数

据上快速准确地检测同震响应信号。使用迁移学习技术构建模型，引入 3种代表性测震数据地震检测预

训练模型作为特征提取器，将其在测震数据上地震检测的知识和能力迁移到定点形变数据上，设计和调

整了配套的数据转换器和分类器。真实观测数据上的测试表明模型具备良好的检测性能，在蓟县台连续

数据上的应用证明模型不仅能够检测出人工记录的所有同震响应事件，还能够发现更多人工未能识别

的事件，精确率不低于 75%，检测效率、检测能力和一致性相比传统人工处理有了很大的提升。
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Deep learning model for co-seismic response detection
of fixed-point deformation data
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Abstract      Co-seismic response identification of fixed-point deformation data currently relies on manual selection,

and no automatic co-seismic response detection method has yet been applied. This study proposes the first deep learning

model for the co-seismic response detection of fixed-point deformation data in China, which is used to detect co-seismic

response  signals  quickly  and  accurately  on  the  second  dataset  of  a  single  vertical  pendulum  broadband  tiltmeter.  The

model  was  constructed  using  the  transfer  learning  technique;  it  introduces  three  representative  pre-trained  models  for

earthquake  detection  in  seismic  data  as  feature  extractors,  migrates  their  knowledge  and  capabilities  of  earthquake
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detection  in  seismic  data  to  fixed-point  deformation  data,  and  then  designs  and  adapts  supporting  data  converters  and
classifiers. Tests on real observational data showed that the model provided a good detection performance. The application
of continuous data from Jixian station proved that the model was not only capable of detecting all the co-seismic response
events  recorded manually,  but  it  also found events  that  were not  recognized manually,  with  an accuracy rate  of  no less
than 75%. Compared with traditional manual processing, the detection efficiency, detection capability, and consistency are
greatly improved using this model.

Keywords      fixed-point  deformation;  co-seismic  response  detection;  deep  learning;  transfer  learning;  vertical
pendulum broadband tiltmeter
  

0    引言

定点形变观测在地震研究中有着广泛的应用，

其连续观测形成的定点形变时序数据可应用到地震

监测预报及相关地球科学领域的研究中 [1-2]。随着观

测技术的进步，定点形变观测能够记录到包括震时

同震波形在内的丰富高频地动信息。台站日常数据

预处理工作要求记录包括同震响应在内的地球物理

事件，很多学者也从不同角度对定点形变观测的同

震响应进行了研究 [3-5]，但目前定点形变数据同震响

应识别仍依赖人工处理，需通过目视判断和人工拣

选来判别同震事件，效率较低，且人工判断的检测方

式容易受到主观判断的影响，准确性、一致性较差。

使用自动检测方法有望提高定点形变数据同震响应

检测的精度和可靠性，可在短时间内完成大量数据

的处理，提高工作效率。但迄今尚未见有定点形变数

据同震响应自动检测方法投入应用。

目前，已有部分针对定点形变数据异常形态自

动检测方法的研究。杨德贺等[6]开发了利用信息熵与

双异常因子构建的高幅值变化和高频变化统一识别

方法；刘明辉等[7]开发了基于小波分析的对扰动信号

的触发检测方法。但上述方法无法判别异常变化的

类型，数据变化的具体性质仍需进一步的人工判断，

无法直接用于定点形变数据的同震响应检测。

深度学习作为人工智能领域的一个重要分支，

近年来在地球科学领域展现了巨大的潜力和广泛的

应用前景。在地震学上，深度学习已经在地震检

测 [8-14]、震相拾取 [15-18]等方面取得了许多卓有成效的

进步与发展，发表了许多代表性成果，但在前兆地球

物理观测数据处理上的应用目前仍处于探索起步阶

段[19]。

本文通过迁移学习构建了专门针对在单台 VP
宽频带倾斜仪秒数据上检测同震响应信号的定点形

变数据同震响应检测深度学习模型。使用模型迁移

技术构建目标模型并引入 3种已发表测震数据地震

检测预训练模型作为特征提取器，将代表性地震检

测深度学习模型在测震数据上地震检测的知识和能

力迁移到定点形变数据上，设计和调整了配套的数

据转换器和分类器。在真实观测数据上评估了模型

的检测性能，然后将模型应用于来自蓟县台的连续

数据，验证了模型的实际应用效能并与人工处理结

果进行了对比。

1    模型构建

1.1    构建思路

深度学习是数据驱动的方法。在定点形变观测

领域，VP宽频带倾斜仪作为监测地面微小倾斜变化

的精密仪器得到了广泛应用，积累了大量观测数据，

但对于其记录到的地震事件一直缺少结构化标签化

整理，未能形成地震事件数据集。这使得从头开发和

训练用于 VP宽频带倾斜仪观测数据同震响应检测

的深度学习模型难以实现。因此使用迁移学习进行

模型开发。迁移学习是人工智能领域一种流行的泛

化方法，将在一个任务中学习到的知识和模式，应用

到新的但相关的任务中以提高新任务的性能 [20]。由

于 VP宽频带倾斜仪记录到的同震响应波形和测震

数据的地震波形存在一定的相似性[21]（图 1）。任务目

标都是地震事件检测，可以使用已发表的测震数据

地震检测研究成果来帮助完成定点形变数据同震检

测任务。

通过迁移学习中基于模型的迁移方法，将已经

训练好的地震检测模型的一部分或全部，即预训练

模型（Pre-Trained Model，PTM），用于目标模型的构

建，然后针对特定的定点形变数据任务进行微调

（Fine-tuning），并添加或修改少量的特定层以满足数

据输入输出的要求，这样可以有效地解决定点形变

带标签地震数据稀缺的问题，因为预训练模型已经

在大量数据上进行了训练。

使用预训练模型作为特征提取器，学习地震信

号的通用特征，在特征提取器前端添加数据转换器，
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将 VP宽频带倾斜仪观测数据转换为特征提取器能

够识别的数据格式，调整特征提取器后端的分类器

使其输出地震信号预测结果。

1.2    预训练模型的选择

测震数据地震检测深度学习模型的开发方兴未

艾，国内外研究者提出了多种不同模型。综合考虑模

型的网络结构、训练数据集和检测性能等因素，选择

基于 Transformer结构和注意力机制的 EarthQuake
Transformer（EQT）模型[10]、基于卷积神经网络和循环

神经网络的 CNN-RNN Earthquake Detector（CRED）模

型 [9]和本团队自主开发的基于小波与轻量化卷积神

经 网 络 的 CWT-CNN  Few-shot  learning  Earthquake
（CCFE）模型 [12]。EQT预训练模型（EQT PTM）使用斯

坦福全球地震数据集（STEAD） [22]进行训练，CRED
预训练模型（CRED PTM）使用美国北加利福尼亚地

震数据集进行训练，CCFE预训练模型（CCFE PTM）

使用 STEAD数据集内中国及周边地区地震数据

（STEAD-China）进行训练。微调阶段，由于缺乏目标

任务地震数据集，无法使用定点形变数据进行模型

的微调训练，STEAD-China数据集包含最大比例台

站周边的地震数据，可能是目标任务比较适合的微

调训练数据集，因此对于 EQT PTM和 CRED PTM模

型，使用 STEAD-China数据进行微调训练，对于已经

使用 STEAD-China数据集进行训练的 CCFE PTM，

使用重复数据进行训练可能导致模型过拟合，因此

直接使用预训练模型。上述模型的基本情况如表 1
所示。

 
 

表 1    本文选择的预训练模型

Table 1    Pre-trained model selected in this paper

预训练模型 网络架构 训练集 训练集大小/个 检测窗长/s 参考文献

EQT PTM Transformer STEAD (pre) + STEAD-China (fine) 1.1 M 60 [10]

CRED PTM CNN-RNN N. California (pre) + STEAD-China (fine) 456 K 30 [9]

CCFE PTM CWT-CNN STEAD-China (pre) + / 16.2 K 24 [12]

 

选择网络架构和训练数据各不相同的多种模

型，有利于在实际使用中根据性能评估选择最合适

的特征提取模型，3种预训练模型根据任务需要既可

以单独使用，也可以联合使用。

1.3    数据转换器

用作特征提取器的 3种预训练模型都是以测震

数据为输入数据设计的，VP宽频带倾斜仪数据与测

震数据在数据格式上存在显著差异，需要在特征提

取器前端添加数据转换器，将输入数据转换为特征

提取器能够识别的数据格式。

VP宽频带倾斜仪数据与测震数据在数据格式上

的差异主要体现在通道数和采样率上。测震数据为

N，E，Z三通道而 VP宽频带倾斜仪数据为 N，E两

通道；测震数据的采样率一般为 50～200 Hz，VP宽频

带倾斜仪的入库数据最高为秒数据，即采样率 1 Hz。

因此，数据转换层需要提高输入数据的采样率并增

加 Z通道数据。

提高一段时序数据的采样率可以采用插值法或

时间压缩法。VP宽频带倾斜仪秒数据与测震数据采

样率差距较大，插值法无法准确还原数据的高频信

息并可能会产生过拟合或欠拟合现象。时间压缩法

可以改变时间窗截取数据的时间长度而不改变数据

原始采样率以达到提高窗口数据采样率的目的，该

方法能够较好地保持信号的原始特征，且 VP宽频带

倾斜仪秒数据记录到的同震响应波形时长一般在数

分钟到数十分钟之间，远大于 3种预训练模型的检

测窗长，采用原始检测窗长并不适用于 VP宽频带倾

斜仪秒数据，因此使用时间压缩法提高数据采样率
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图 1    蓟县台 VP宽频带倾斜仪（a）  与宽频带地震仪（b）  记

录到的 2023年土耳其 7.8级地震

Fig. 1    M7.8 Türkiye earthquake in 2023 recorded by (a) ver-
tical  pendulum broadband  tiltmeter  and  (b)  broadband
seismometer at Jixian station
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可能是更好的选择。使用时间压缩法将输入数据的

采样率从 1 Hz提高到 50 Hz，即将 3种预训练模型对

应的数据转换层输入数据的截取时长分别提高到

50，25和 20 min（表 2）。使得数据转换层输出窗口的

VP宽频带倾斜仪秒数据的样本数与各预训练模型

相应检测窗长的 50 Hz测震数据的样本数一致。

  
表 2    各预训练模型的检测窗长和输入窗长

Table 2    Detection window length and input window length of
each pre-trained model

预训练模型 检测窗长/s 数据转换层输入窗长/min

EQT PTM 60 50

CRED PTM 30 25

CCFE PTM 24 20

 
为时序数据新增数据通道需要确定新通道的数

据来源。由于 VP宽频带倾斜仪没有 Z方向的观测，

无法通过测量或计算确定 Z通道的取值。本文引入

的预训练模型使用的地震数据集中都包含一定比例

的通道缺失的数据，在处理通道缺失的数据时具有

良好的鲁棒性，因此我们将新增 Z通道的数值取为

零并在时间上与现有通道数据对齐，模拟三通道数

据存在通道缺失的情况。

1.4    分类器

分类器接收特征提取器从输入数据中提取的信

号特征并输出地震检测概率预测结果，由于引入的

预训练模型的源目标与既定目标任务一致，就可以

部分复用预训练模型的分类器。在使用的预训练模

型中，EQT PTM与 CCFE PTM的分类器输出地震检

测预测结果的同时还输出震相识别预测结果，震相

识别不是任务目标，因此，在使用 EQT PTM与 CCFE
PTM时对分类器进行调整，使其只输出地震检测的

预测结果。整个模型的网络架构如图 2所示。

2    模型评估与应用

2.1    测试数据来源

使用两段蓟县台真实数据测试并评估模型在 VP
宽频带倾斜仪秒数据上的检测性能。一段是 2024年

1月 9日 02:00—20:00，该时段记录到东南亚地区、

日本地区和南太平洋地区发生的 3次 5级以上地

震，以检验模型对不同地区不同波形地震的检测性

能；另一段是 2024年 4月 23日 00:30—12:30，该时

段记录到台湾花莲县及附近海域发生的 10次 5级以

上地震，以检验模型对短时间内多次地震的检测性

能。两段测试数据包含的地震事件如表 3所示。测试

数据除记录到多次同震响应事件外，还记录到台站

周边长期存在的抽水干扰，在数据上表现为多次不

定时的同步台阶变化。
 
 

表 3    两段测试数据包含的地震事件

Table 3    Seismic  events  included  in  the  two  segments  of  test
data

地震地点 地震时间 震级 震中距/km

印尼塔劳群岛 2024-01-09 04:48 6.6 4 011

汤加群岛 2024-01-09 15:53 5.5 9 843

日本本州西岸近海 2024-01-09 16:59 5.9 1 766

台湾花莲县海域 2024-04-23 02:26 6.3 1 863

台湾花莲县 2024-04-23 02:32 6.2 1 848

台湾花莲县海域 2024-04-23 04:49 5.8 1 862

台湾花莲县 2024-04-23 05:04 5.1 1 861

台湾花莲县海域 2024-04-23 05:19 5.2 1 854

台湾花莲县 2024-04-23 05:24 5.0 1 856

台湾花莲县海域 2024-04-23 05:31 5.3 1 849

台湾花莲县 2024-04-23 08:04 6.0 1 842

台湾花莲县海域 2024-04-23 09:45 5.0 1 850

台湾花莲县海域 2024-04-23 10:21 5.0 1 848
 

2.2    不同预训练模型的性能对比

在测试之前需要对数据完成的唯一预处理步骤

是去趋势和归一化。预处理后，以 1 min的步长在连

续数据中截取 3种窗长的数据输入模型进行检测，
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0
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图 2    模型示意图

Fig. 2    Schematic diagram of the model
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检测阈值设定为 0.5。
图 3和图 4显示了模型在测试数据上的检测结

果。2024年 1月 29日的测试数据上，模型使用 EQT
PTM检测到全部 3次地震事件，没有虚报，CCFE
PTM没有虚报但漏报 1次，CRED PTM检测到全部

3次地震事件出现 4次虚报。2024年 4月 23日的测

试数据上，模型使用 EQT PTM检测到 10次地震中

的 6次，没有虚报，CCFE PTM检测到 5次同样没有

虚报，CRED PTM检测到 7次地震事件出现 4次虚

报。模型在测试数据上没有出现与受抽水干扰时段

对应的错误检测。可以看出，模型能够在整个测试时

段内比较准确的检测到不同地区、不同振幅、不同震

中距的地震信号，没有受到抽水信号的干扰，除

CRED PTM外没有出现错误检测，只有发震间隔较

短，同震信号在输入窗长内相互掩盖的情况下出现

部分漏检，证明模型在测试数据上具有良好的地震

检测性能，有效地将预训练模型在测震数据上的地

震检测能力迁移到了 VP宽频带倾斜仪秒数据上。
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图 3    模型在蓟县台 2024年 1月 9日测试数据上的检测结果

Fig. 3    Test results of model using data from Jixian station recorded on January 9, 2024
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图 4    模型在蓟县台 2024年 4月 23日测试数据上的检测结果

Fig. 4    Test results of model using data from Jixian station recorded on April 23, 2024
 

使用精确率 Pre（Precision）、召回率 Rec（Recall）

和两者的调和平均数 F1分数（F1 Score）3个参数来

评估不同预训练模型在测试数据上的检测性能，参

数取值范围为 0～1，1表示最佳分类性能，0表示最

差。其计算公式如下：

Pre =
T P

T P+FP
(1)

Rec =
T P

T P+FN
(2)

F1 = 2× Pre×Rec
Pre+Rec

(3)

式中，TP（True Positives）表示正确识别为正例的数

量，即报对数，FP（False Positives）表示错误识别为正

例的数量，即虚报数，FN（False Negatives）表示错误

识别为负例的正例数量，即漏报数。测试数据上的混
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淆矩阵如表 4和表 5所示，EQT PTM在 F1分数方面

优于其他两种预训练模型，在精确率和召回率上的

表现更均衡，表明在蓟县台数据上进行检测时，使

用 EQT PTM可能是更优的选择。
 
 

表 4    不同预训练模型在蓟县台 2024年 1月 9日测试数据上的表现

Table 4    Performance of different pretrained models using test data from Jixian station recorded on January 9, 2024

预训练模型 报对数 虚报数 漏报数 精确率 召回率 F1分数

EQT PTM 3 0 0 1.00 1.00 1.00

CCFE PTM 2 0 1 1.00 0.67 0.80

CRED PTM 3 4 0 0.43 1.00 0.60

 
 

表 5    不同预训练模型在蓟县台 2024年 4月 23日测试数据上的表现

Table 5    Performance of different pretrained models using test data from Jixian station recorded on April 23, 2024

预训练模型 报对数 虚报数 漏报数 精确率 召回率 F1分数

EQT PTM 6 0 4 1.00 0.60 0.75

CCFE PTM 5 0 5 1.00 0.50 0.67

CRED PTM 7 4 3 0.64 0.70 0.67

 

2.3    蓟县台连续数据上的应用

将模型应用于 2024年 1—6月蓟县台 VP宽频带

倾斜仪连续数据。模型的特征提取器根据测试数据

上的表现选择 EQT PTM，数据按日进行去趋势和归

一化的预处理后以 1 min步长 50 min窗长输入模型

进行检测，在配备 3.6 GHz AMD Ryzen 5的 CPU、NVI-
DIA GeForce GTX 1070 Ti的 GPU和 16.0 GB内存的

电脑上，完成一日数据检测的总处理时间不超过

5 min。在 6个月的连续数据上模型共检测出 162次

同震响应事件，对照中国地震台网中心正式地震目

录对检测到的事件进行检查，有 39个无法与正式目

录里 3级以上地震对应，占检测到的事件总数的

24%，这些检测事件可能与更小震级的地震相关联，

未经进一步确认前不能将它们全部认定为错误检

测，其他 123个检测事件可以确定为正式目录内地

震事件对应的同震响应，检测精确率不低于 75%，检

测数量是同期台站观测人员通过人工拣选记录在日

志中的 38次同震响应的 3.24倍。模型检测与人工拣

选的同震响应事件数量对比如图 5所示。对比人工

拣选与模型检测的事件列表，人工拣选的同震响应

事件均被模型检出，表明模型至少达到了人工识别

的水平。在各个震级区间，模型检测出的同震响应事

件数量上都不少于人工拣选，额外事件的检出意味

着模型的召回率相较于人工更高，这种增强的检测

能力能够覆盖更长时间或更大规模的定点形变数

据，减少了遗漏的风险。在 4～6级区间，模型检出

事件明显多于人工记录，与台站同志分析讨论后认

为，4～6级同震事件人工记录偏少和记录人员主观

因素导致的判断差异有关，自动检测模型在各个震

级区间具有更高的一致性，因此在 4～6级区间能够

检测出较人工记录更多的同震事件。4级以下地震事

件，受仪器性能所限，记录能力较弱，模型检出和人

工记录的事件数量均较少。
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图 5    蓟县台 2024年 1—6月模型检测与人工拣选记录地

震数量对比

Fig. 5    Comparison  of  number  of  earthquakes  recorded  by
model  detection  and manual  selection  at  Jixian  station
from January to June 2024

 
检测时间段内，蓟县台 VP宽频带倾斜仪数据出

现 3次短时秒数据缺测等观测系统干扰，1次气压扰

动造成的环境干扰，4次调零标定等造成的人为干扰

和 5次突跳畸变等未知原因的数据变化。经检查，这

些非地震因素数据扰动均未造成模型错误检测，显

示出模型对于非地震扰动信号较强的鲁棒性。
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3    结语

针对定点形变数据同震响应识别依靠人工拣

选，尚未有自动检测方法投入应用的问题，本文提出

专门针对定点形变数据的同震响应检测深度学习模

型。利用 3种代表性测震数据地震检测预训练模型，

即 EQT模型、CRED模型和 CCFE模型，这些预训练

模型在大规模地震数据集上进行了充分训练。通过

迁移学习，这些模型能够继承预训练模型的检测能

力，获得定点形变数据上良好的检测性能。

模型在蓟县台 6个月连续数据上的检测精确率

不低于 75%，不仅能够检测出人工记录的所有同震

响应事件，还能够发现更多人工未能识别的事件，检

测数量是人工记录的 3.24倍，显著提高了检测召回

率。模型在各个震级区间能够保持一致的性能，避免

因主观因素而产生的判断差异。模型在不同类型的

地震数据和复杂的干扰环境中表现出良好的鲁棒

性。与传统的人工拣选方法相比，模型能够快速处理

大规模数据，大幅提升了检测效率。

除蓟县台数据以外，模型将在更多台站定点形

变数据上进行检测应用与分析，通过多台数据的测

试与检验进一步完善已有模型，提高检测性能。通过

模型协助人工有望实现快速准确的同震响应信号检

测，帮助多台产出各自更完整更准确的同震响应目

录，服务于监测预报和科研工作，为深度学习在前兆

地球物理观测领域的应用拓展提供新的路径。后续

通过对检测目录内事件的清洗、结构化和标签化，可

以构建本地定点形变观测地震数据集，使用本地数

据集对模型继续训练微调，有望进一步提升模型在

本地数据上的检测性能，实现模型的本地化迭代

优化。
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