Uncertainty analysis of seismic response of soil layer in deep overburden area
-
摘要: 以上海地区作为深厚覆盖层地区代表,在丰富的地质资料基础上,全面、系统地分析了100 m以深地层的土层分布、剪切波速、土动力特性参数、密度和地震输入界面这5个不确定因素可能的分布范围,并采用逻辑树分析方法,利用等效线性化土层地震反应分析,计算得到了这5种不确定因素在23种工况下3个超越概率、4个典型地质孔的地表峰值加速度和反应谱结果。经分析表明,100 m以深地层的土动力特性参数、剪切波速、土层分布、密度属于低敏感性因素,其不确定性对地表地震动参数影响较小,峰值加速度差异基本在5%以内;地震输入界面属于高敏感性参数,对地表地震动参数(尤其是低频段)影响较大,最大差异可达30%—40%。地震安全性评价工作中应合理设定地震输入界面,以避免可能对工程抗震设防参数带来的不利影响。Abstract: Taking Shanghai area as the representative of deep overburden area, based on abundant geological data, this paper comprehensively and systematically analyzes the possible distribution range of 5 uncertain factors, including soil layer distribution, shear wave velocity, soil dynamic characteristic parameters, density and seismic input interface, in a depth of 100 m, and uses the logic tree analysis method and equivalent linear method for seismic response analysis of soil layers, the surface peak acceleration and response spectrum results of 5 uncertain factors, 3 exceedance probabilities and 4 typical geological holes under 23 working conditions are calculated. It shows that the parameters of soil dynamic characteristics, shear wave velocity, soil layer distribution and density in the depth of 100 m are low sensitive parameters, and their uncertainty have little impact on the ground motion parameters, the difference of peak acceleration are basically within 5%. The seismic input interface is a highly sensitive parameter, which has a great impact on the ground motion parameters (especially to the low frequency band), with the maximum difference of 30%—40%. The seismic input interface should be reasonably set in the seismic safety evaluation to avoid the adverse impact on the seismic fortification parameters of the project.
-
图 8 典型地层2超越概率50年10%反应谱值时不同工况与基准工况的偏差最大值分布图
与基准工况的偏差:土层分布(a),土动力特性参数(b),剪切波速(c),密度(d)和地震输入界面(e);反应谱分布对比:不同地震输入界面工况(f)
Figure 8. Distribution diagram of the maximum deviation between the response spectrum value of the 50-year exceedance probability of 10% of the typical stratum 2 and the reference condition under different working conditions
表 1 上海地区土层土动力特性参数特征
Table 1. Characteristics of dynamic characteristic parameters of soil layer in Shanghai
土类 土层层号、名称及深度范围 土动力特性参数特征 黏
性
土②1层粉质黏土(2—4 m) 模量最小、阻尼最大 ⑤1层粉质黏土(20—30 m) ⑤3层粉质黏土(30—50 m) ⑤4层粉质黏土(35—50 m) 模量最大、阻尼最小 ⑥层粉质黏土(17—35 m) ⑧1层黏土(40—70 m) 砂
土②3层粉性土(5—15 m) 模量最小、阻尼最大 ⑤2层粉性土(20—40 m) ⑦1层砂质粉土(25—40 m) ⑦2层粉砂(35—70 m) ⑨1层粉细砂(60—90 m) ⑨2层中粗砂(80—100 m) 模量最大、阻尼最小 -
[1] 全国地震标准化技术委员会. 工程场地地震安全性评价: GB17741—2005[S]. 北京: 全国标准信息公共服务平台, 2005National Technical Committee for Seismic Standardization. Evaluation of seismic safety for engineering sites: GB17741—2005[S]. Beijing: National Public Service Platform for Standards Information, 2005 [2] 石玉成,蔡红卫,徐晖平. 场地地震反应分析中的不确定性及其处理方法[J]. 西北地震学报,1999,21(3):242-246Shi Y C,Cai H W,Xu H P. Uncertainties in site earthquake response and way of its processing[J]. Northwestern Seismological Journal,1999,21(3):242-246 [3] 楼梦麟,严国香,沈建文,等. 上海软土动力参数变异性对土层地震反应的影响[J]. 岩土力学,2004,25(9):1368-1372 doi: 10.3969/j.issn.1000-7598.2004.09.005Lou M L,Yan G X,Shen J W,et al. Effect of variability of dynamic parameters of soft soil in Shanghai region on seismic response of layered soil[J]. Rock and Soil Mechanics,2004,25(9):1368-1372 doi: 10.3969/j.issn.1000-7598.2004.09.005 [4] 冯伟栋,曹均锋,彭刘亚,等. 土层模型参数变异性对场地地表地震动的影响分析[J]. 防灾科技学院学报,2020,22(3):28-34Feng W D,Cao J F,Peng L Y,et al. Analysis of influence of soil model parameter variability on ground motion response[J]. Journal of Institute of Disaster Prevention,2020,22(3):28-34 [5] 洪海春,许汉刚,陶小三,等. 控制性深孔地震输入界面位置的确定方法和影响研究[J]. 震灾防御技术,2013,8(1):52-61Hong H C,Xu H G,Tao X S,et al. Determination and effect of earthquake input interface of deep governing holes[J]. Technology for Earthquake Disaster Prevention,2013,8(1):52-61 [6] 胡聿贤. 地震安全性评价技术教程[M]. 北京: 地震出版社, 1999Hu Y X. Technical tutorial on seismic safety evaluation[M]. Beijing: Seismological Press, 1999 [7] 陈汉尧,胡聿贤. 地震危险性不确定性分析中专家意见的合理综合[J]. 华北地震科学,1993,11(3):1-8Chen H Y,Hu Y X. A rational comprehension of expert’s opinions in analysis of uncertainty of seismic risk[J]. North China Earthquake Sciences,1993,11(3):1-8 [8] 杨智娴,张培震,郑月君. 用逻辑树方法估计地震年发生率的不确定性[J]. 地震学报,1998,20(2):185-193Yang Z X,Zhang P Z,Zheng Y J. Uncertainty of estimating the annual occurrence rate of earthquakes using the logic tree method[J]. Acta Seismologica Sinica,1998,20(2):185-193 [9] 章在墉. 地震危险性分析及其应用[M]. 上海: 同济大学出版社, 1996Zhang Z Y. Seismic risk analysis and its application[M]. Shanghai: Tongji University Press, 1996 [10] 上海市地质资料馆. 上海地质资料信息共享平台[DB/OL]. [2023-02-12]. https://data.sigs.cn/Shanghai Geological Data Center. Shanghai geological data information sharing platform[DB/OL]. [2023-02-12]. https://data.sigs.cn/ [11] 张亚军,兰宏亮,崔永高. 上海地区土动剪切模量比和阻尼比的统计研究[J]. 世界地震工程,2010,26(2):171-175Zhang Y J,Lan H L,Cui Y G. Statistical studies on shear modulus ratio and damping ratios of soil in Shanghai area[J]. World Earthquake Engineering,2010,26(2):171-175 [12] 李敏, 杨立国, 陈海鹏, 等. 杭州市典型土层剪切波速与埋深间的关系分析[J]. 震灾防御技术, 2020, 15(1): 77-88Li M, Yang L G, Chen H P, et al. Relationship between shear wave velocity and soil depth of typical soil layers in Hangzhou area[J]. Technology for Earthquake Disaster Prevention, 2020, 15(1): 77-88 [13] 刘红帅, 郑桐, 齐文浩, 等. 常规土类剪切波速与埋深的关系分析[J]. 岩土工程学报, 2010, 32(7): 1142-1149Liu H S, Zheng T, Qi W H, et al. Relationship between shear wave velocity and depth of conventional soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 1142-1149 [14] 战吉艳,陈国兴,刘建达,等. 苏州城区深软场地土剪切波速与土层深度的经验关系[J]. 世界地震工程,2009,25(2):11-17Zhan J Y,Chen G X,Liu J D,et al. Empirical relationship between shear wave velocity and soil depth on deep soft sites in urban area of Suzhou city[J]. World Earthquake Engineering,2009,25(2):11-17 [15] 荣绵水,吕悦军,蒋其峰,等. 渤海常见土类剪切波速与埋深关系分析[J]. 震灾防御技术,2017,12(2):288-297 doi: 10.11899/zzfy20170205Rong M S,Lü Y J,Jiang Q F,et al. Relationship between shear wave velocity and depth for conventional soils in the Bohai sea area[J]. Technology for Earthquake Disaster Prevention,2017,12(2):288-297 doi: 10.11899/zzfy20170205 [16] 岩土工程勘察规范: GB50021—2001[S]. 郑州: 黄河水利出版社, 2002Code for investigation of geotechnical engineering: GB50021—2001[S]. Zhengzhou: Yellow River Water Conservancy Publishing House, 2002 -